Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(3): 2082-2092, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38131401

RESUMEN

Nitrogen fixation using electrochemical methods on the surface of single-atom catalysts (SACs) provides a highly feasible strategy for green and low-energy-consumption ammonia (NH3) production. Herein, using density functional theory (DFT) calculations, we explored in detail the potential of monolayer BC3N2 SACs supported with 3d transition metal (TM) atoms (TM@BC3N2) to facilitate nitrogen reduction. The results revealed that the TM@BC3N2 systems exhibited remarkable catalytic activity in the nitrogen-reduction reaction (NRR). The fine NRR activity was related to the just-right bonding/antibonding orbital interactions between the 2π* of N2 and the d orbitals of the TM ions. The nitrogen-adsorption configurations were found to have different activation mechanisms. In addition, the effects of convectively formed convex nitrogen defects (VN) on the interaction between N2 and VN-TM@BC3N2 and the NRR process of VN-TM@BC3N2 were studied, and it was found that VN could fine-tune the reaction efficiency of the eNRR because after N atom dissociation to form VN, the interaction of TM-C3 was enhanced, and the activation of nitrogen and adsorption of NH3 by the TM-active centers were weakened. The present study can be used as a motivation for further experimental and theoretical research of 2D monolayers as NRR electrocatalysts.

2.
Phys Chem Chem Phys ; 26(36): 24078-24089, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39248038

RESUMEN

A Bayesian optimisation algorithm for deep learning crystal structure prediction software (CBD-GM) is used to predict the structures of Cu(I) and Cu(II) oxides of 2D and 3D materials. Two known 2D structures and two known 3D structures were anticipated, in addition to the prediction of 5 novel structures. All nine structures were optimised and analysed using density-functional theory (DFT). Firstly, DFT calculations using the PBE functional indicate that the structures should be thermodynamically and dynamically stable. Secondly, we calculated the elastic constants using the "stress-strain" method, and the predicted Young's modulus and Poisson's ratios of the materials suggest that they all should have excellent ductile mechanical properties. Calculations of the band structure of the materials performed using the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional indicate that some of the materials should be semiconductors with useful bandgaps. The results therefore provide inspiration for the synthesis of new copper oxides for industrial applications.

3.
Nanotechnology ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37918018

RESUMEN

The photogalvanic effects (PGEs) in low-dimensional devices have attracted great interests recently. Herein, based on non-equilibrium Green's function combined with density functional theory, we investigated spin-dependent PGE phenomena in the BiC photodetector for the case of linearly polarized light and zero bias. Due to the presence of strong spin-orbital interaction (SOI) and C3v symmetry for the BiC monolayer, the armchair and zigzag BiC photodetectors produce robust spin-dependent PGEs which possess the cos(2θ) and sin(2θ) relations on the photon energies. Especially, the armchair and Bi-vacancy armchair BiC photodetector can produce fully spin polarization, and pure spin current was found in the armchair and zigzag BiC photodetector. Furthermore, after introducing the Bi-vacancy, C-vacancy, Bi-doping and C-doping respectively, corresponding armchair and zigzag BiC photodetector can produce higher spin-dependent PGEs for their Cs symmetry. Moreover, the behaviors of spin-dependent photoresponse are highly anisotropic and can be tuned by the photon energy. This work suggested great potential applications of the BiC monolayer on PGE-driven photodetectors in low energy-consumption optoelectronics and spintronic devices. .

4.
Phys Chem Chem Phys ; 25(3): 2430-2438, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36598374

RESUMEN

Searching for high-performance anode materials and CO2 adsorption materials are key factors for next-generation renewable energy technologies and mitigation of the greenhouse effect. Herein, we report a novel two-dimensional (2D) BC2P monolayer with great potential as an anode material for lithium-ion batteries (LIBs) and as a material for CO2 adsorption. The adsorption energies of Li atoms and CO2 molecules on the BC2P supercell are negative enough to assure stability and safety under operating conditions. More intriguingly, the BC2P monolayer possesses a very high theoretical capacity of 1018.8 mA g h-1 for LIBs. In addition, the diffusion energy barriers of Li on the BC2P supercell are 0.26 and 0.87 eV, showing good charge/discharge capability, and the electrode potential of Li is beneficial to their performance as an anode material. Moreover, four chemical and three physical adsorption sites were verified, indicating that the CO2 molecule was effectively adsorbed on the BC2P supercell. These desirable properties make the BC2P monolayer a promising 2D material for application in LIBs and for CO2 adsorbents aimed at highly efficient CO2 capture.

5.
Inorg Chem ; 61(44): 17634-17640, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36270023

RESUMEN

The accurate design and systematic engineering of MOFs is a large challenge due to the randomness of the synthesis process. Isoreticular chemistry provides a powerful approach for the regulation of pore environment in a more predictable and precise way to systematically control gas/vapor adsorption performances. Herein, utilizing an effective strategy of altering the "pillared" motifs of pillared layer structures, three isoreticular ultramicroporous MOFs were successfully constructed. Combined with the reported parent MOFs and two other recorded isoreticular MOFs modified with -NH2 and -CH3, gas and vapor uptake performances of this family of isoreticular pillared layer MOFs were systematically explored.

6.
Environ Res ; 212(Pt D): 113479, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35588777

RESUMEN

Searching for an economical and highly efficient electrocatalytic reduction catalyst for ammonia synthesis under controllable conditions is a very attractive and challenging subject in chemistry. In this study, we systematically studied the electrocatalytic performance of BC3 nanosheets as potential NO reduction reaction (NORR) electrocatalysts using density functional theory (DFT) calculations. It was found that BC3 two-dimensional (2D) materials exhibit excellent catalytic activity with a very low limiting potential of -0.29/-0.11 V along three reaction paths. The total reaction is NO (g)+5H++5e-→NH3(g)+ H2O. The density of states of adsorbed NO, NH3, and the corresponding crystal orbital hamiltonian population (COHP) analysis revealed the mechanism of NO being activated and the reasons for NH3 adsorption/desorption on the surface of BC3. The reaction path, limiting potential, and Gibbs free energy calculations of BC3 catalyzed NO to ammonia synthesis revealed that for path 1, the potential-determining step is *NO+H++e-→*NOH, and for path 2/3 the potential-determining step is *NO+(H++e-)→*HNO. Calculation of the thermodynamic energy barriers for NO dissociation at the BC3 surface and NO hydrogenation reveals that NO is more likely to be hydrogenated rather than dissociated. The influences of the proton-electron hydrogenation site on the process of ammonia synthesis in the key reduction step were analyzed by Bader charge analysis and charge density, it is pointed out that the electronic structure and affects the reaction process can be controlled by hydrogenation at different sites of intermediates. These results pave the way for using nitrogen oxides not just nitrogen as raw materials for ammonia synthesis with 2D materials.

7.
Molecules ; 27(7)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35408715

RESUMEN

Herein, the adsorption characteristics of graphene substrates modified through a combined single manganese atom with a vacancy or four nitrogen to CH2O, H2S and HCN, are thoroughly investigated via the density functional theory (DFT) method. The adsorption structural, electronic structures, magnetic properties and adsorption energies of the adsorption system have been completely analyzed. It is found that the adsorption activity of a single vacancy graphene-embedded Mn atom (MnSV-GN) is the largest in the three graphene supports. The adsorption energies have a good correlation with the integrated projected crystal overlap Hamilton population (-IpCOHP) and Fermi softness. The rising height of the Mn atom and Fermi softness could well describe the adsorption activity of the Mn-modified graphene catalyst. Moreover, the projected crystal overlap Hamilton population (-pCOHP) curves were studied and they can be used as the descriptors of the magnetic field. These results can provide guidance for the development and design of graphene-based single-atom catalysts, especially for the support effect.

8.
Chemphyschem ; 22(16): 1712-1721, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34132010

RESUMEN

The synthesis of ammonia (NH3 ) through the electrochemical reduction of molecular nitrogen (N2 ) is a promising strategy for significantly reducing energy consumption compared to traditional industrial processes. Herein, we report the design of a series of monovacancy and divacancy defective graphenes decorated with single 3d transition metal atoms (TM@MVG and TM@DVG; TM=Sc-Zn) as electrocatalysts for the nitrogen-reduction reaction (NRR) aided by density functional theory (DFT) calculations. By comparing energies for N2 adsorption as well as the free energies associated with *N2 activation and *N2 H formation, we successfully identified V@MVG, with the lowest potential of -0.63 V, to be an effective catalytic substrate for the NRR in an enzymatic mechanism. Electronic properties, including Bader charges, charge density differences, partial densities of states, and crystal orbital Hamilton populations, are further analyzed in detail. We believe that these results help to explain recent observations in this field and provide guidance for the exploration of efficient electrocatalysts for the NRR.

9.
Phys Chem Chem Phys ; 23(40): 23219-23224, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34622904

RESUMEN

The separation of CO2 or CH4 from a CO2/CH4 mixture has drawn great attention in relation to solving air pollution and energy shortage issues. However, research into using bifunctional catalysts to separate CO2 and CH4 under different conditions is absent. We have herein designed a novel B-doped two-dimensional InSe (B@2DInSe) catalyst, which can chemically adsorb CO2 with covalent bonds. B@2DInSe can separate CO2 and CH4 in different electric fields, which originates from different regulation mechanisms by an electric field (EF) on the electric properties. The hybridization states between CO2 and B@2DInSe near the Fermi level have experienced gradual localization and eventually merged into a single narrow peak under an increased EF. As the EF further increased, the merged peak shifted towards higher energy states around the Fermi level. In contrast, the EF mainly alters the degree of hybridization between CH4 and B@2DInSe at states far below the Fermi level, which is different from the CO2 situation. These characteristics can also lead to perfect linear relationships between the adsorption energies of CO2/CH4 and the electric field, which may be beneficial for the prediction of the required EF without large volumes of calculations. Our results have not only provided novel clues for catalyst design, but they have also provided deep understanding into the mechanisms of bifunctional catalysts.

10.
Phys Chem Chem Phys ; 23(17): 10418-10428, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33889880

RESUMEN

Ammonia (NH3) is the main raw material for the organic chemical industry and a critical feedstock for the fertilizer industry with great significance for the global economy. The NH3 demand has gradually increased with modern society development. Moreover, the electrocatalytic nitrogen reduction reaction (NRR) is a promising NH3 synthesis technology. However, the design of efficient electrocatalysts for the NRR is still challenging. In this study, we systematically analyzed transition metal (TM) single-atoms (Ti, V, Cr, Mn, Zr, Nb, and Mo) anchored on graphyne (GY) as NRR catalysts using density functional theory calculations. The calculation results for the first and last hydrogenation steps (*NNH formation and *NH3 desorption, respectively) revealed that Mn@GY (with an end-on configuration) and V@GY (with a side-on configuration) were the most suitable catalytic substrates for the NRR. The free-energy profiles of the TM@GY catalysts indicated that Mn@GY was the best NRR electrocatalyst owing to its distal pathway with a minimum free-energy barrier of 0.36 eV. In addition, the electronic properties, namely the Bader charge, charge density difference, partial density of states, and crystal orbital Hamilton population, of the TM@GY catalysts were analyzed in detail, and the results further confirmed that Mn@GY was an efficient electrocatalyst. The insights obtained from this comprehensive study can provide useful guidelines for designing new and efficient electrocatalysts.

11.
Phys Chem Chem Phys ; 19(38): 26022-26033, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28920598

RESUMEN

In this study, the interaction between gas molecules, including H2O, N2, CO, NO, NO2 and N2O, and a WSe2 monolayer containing an Se vacancy (denoted as VSe) has been theoretically studied. Theoretical results show that H2O and N2 molecules are highly prone to be physisorbed on the VSe surface. The presence of the Se vacancy can significantly enhance the sensing ability of the WSe2 monolayer toward H2O and N2 molecules. In contrast, CO and NO molecules highly prefer to be molecularly chemisorbed on the VSe surface with the non-oxygen atom occupying the Se vacancy site. Furthermore, the exposed O atoms of the molecularly chemisorbed CO or NO can react with additional CO or NO molecules, to produce C-doped or N-doped WSe2 monolayers. The calculated energies suggest that the filling of the CO or NO molecule and the removal of the exposed O atom are both energetically and dynamically favorable. Electronic structure calculations show that the WSe2 monolayers are p-doped by the CO and NO molecules, as well as the C and N atoms. However, only the NO molecule and N atom doped WSe2 monolayers exhibit significantly improved electronic structures compared with VSe. The NO2 and N2O molecules will dissociate directly to form an O-doped WSe2 monolayer, for which the defect levels due to the Se vacancy can be completely removed. The calculated energies suggest that although the dissociation processes for NO2 and N2O molecules are highly exothermic, the N2O dissociation may need to operate at an elevated temperature compared with room temperature, due to its large energy barrier of ∼1 eV.

12.
Phys Chem Chem Phys ; 17(6): 4434-40, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25578959

RESUMEN

Bismuth oxide haloids BiOXs (X = Cl, Br, I) have received attention as photocatalytic materials after TiO2 in recent years due to their unique layered structures. Using an ab initio evolutionary methodology structure search method, we systematically investigate the evolution of BiOF structures under pressure. It is found that BiOF can maintain its layered structure up to 300 GPa. Three stable new phases with Pnma, P3̅m1 and Cmcm structure at a pressure of 10, 66, and 286 GPa have been identified for the first time. All the newly found phases are two-dimensional layered structures characterized by Bi-O slabs interleaved with F(-) anion slabs. Moreover, all three phases are indirect semiconductors with wide band gaps. It is found that pressure can cause great change in the band gaps of BiOF. The band gaps of the high-pressure phases of BiOF vary nearly linearly with pressure but exhibit different pressure trends. The electronic structure, structural stability, phase transition mechanisms and evolution of the Bi-O slabs of BiOF under pressure are discussed.

13.
Chem Commun (Camb) ; 60(29): 3962-3965, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38501367

RESUMEN

The sluggish conversion kinetics and notorious shuttle effect of polysulfides are critical hindrances to practical implementation of lithium-sulfur batteries. Herein, bimetallic oxyhydroxide (FeNiOOH) as a functional sulfur host is proposed to overcome these obstacles. The introduction of Ni sites can modulate the electronic structure of the active sites to implement strong soluble polysulfide species immobilization and accelerate the conversion reaction kinetics of polysulfides, resulting in improved sulfur utilization and reduced polarization during the electrochemical reaction process. Benefiting from these advantages, FeNiOOH enables the sulfur cathode to deliver superior rate capability and cycling stability.

14.
J Chem Phys ; 138(14): 144703, 2013 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24981540

RESUMEN

The mechanism of ammonia decomposition and oxidation on Ir(110) was studied on the basis of periodic density functional theory calculations and microkinetic modeling. The results indicate that NH3 dissociation is more favorable than desorption at atop site, while at top site NH3 desorption and dissociation are competitive. On the other hand, when O or OH is co-adsorbed, the NH3 dehydrogenation is slightly inhibited and mainly via hydrogen abstraction reaction rather than thermal decomposition, while it is reversed for NH2 dehydrogenation. The former mechanism is favored for O assisted NH dehydrogenation, while it changed to latter one for OH. On clean Ir(110), N + NH → N2 + H pathway is the major N2 formation pathway and N + N is also involved but less competitive, while N + N becomes the predominant one and is enhanced on O-predosed Ir(110). NO formation occurs only at higher temperature when N2 is desorbed from the surface. The microkinetic analysis further confirms that the dominant product is N2 at low temperature while becomes NO as temperature increases, and the temperature of NO formation decreases when O2 partial pressure increases. The present calculation results are in good agreement with the experimental observations.

15.
Nanoscale ; 15(26): 11083-11089, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37335273

RESUMEN

The stability of two-dimensional (2D) metal-organic frameworks (MOFs) and their physical and chemical properties for potential applications are contentious. We herein investigated geometric, electronic and magnetic properties of the planar (p-) and corrugated (c-) phases of nickel ions with hexathiolbenzene (HTB)-based coordination nanosheets (Ni3HTB). The c-Ni3HTB is an antiferromagnetic semiconductor with a direct band gap of 0.33 eV, while the p-Ni3HTB is a ferromagnetic metal. This indicates that the electronic and magnetic properties of c-Ni3HTB and p-Ni3HTB depend on their geometric pattern. Furthermore, we applied biaxial strain and molecular adsorption to control their electronic and magnetic properties. In addition, we have proved that the corrugated phase in some kinds of 2D MOFs is common. Our work not only demonstrates that the potential applications of 2D MOFs should be scrupulously explored but also offers a new platform to investigate the physical and chemical properties of 2D MOFs.

16.
ACS Appl Mater Interfaces ; 15(19): 23538-23545, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37150971

RESUMEN

The achievement of direct C2H4 separation from C2 hydrocarbons is very challenging in the petrochemical industry due to their similar molecular sizes, boiling points, and physicochemical properties. In this work, a nonpolar/inert ultramicroporous metal-organic framework (MOF), [Co3(µ3-OH)(tipa)(bpy)1.5]·3DMF·6H2O (1), with stand-alone one-dimensional square tubular channels was successfully constructed, its pore enriched with plenty of aromatic rings causing nonpolar/inert pore surfaces. The MOF shows preferential adsorption of C2H6 compared to C2H4 and C2H2 in the low-pressure region, which is further verified by adsorption heats and selectivities. The C2H4 separation potential in one step for binary C2H6/C2H4 (50/50 and 10/90) and ternary C2H4/C2H6/C2H2 (89/10/1) is also examined by transient breakthrough simulations. Moreover, grand canonical Monte Carlo simulations demonstrate that the unique reversed adsorption mechanism is due to the shortest and most number of C-H···π interactions between C2H6 and the framework.

17.
J Colloid Interface Sci ; 649: 194-202, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37348339

RESUMEN

Elaborate and rational design of cost-effective and high-efficiency non-noble metal electrocatalysts for pushing forward the sustainable hydrogen fuel production is of great significance. Herein, a novel VS4 nanoparticle decorated Ni3S2 nanobelt array in-situ grown on nickel foam (VS4/Ni3S2/NF NBs) was prepared by a self-templated synthesis strategy. Benefitting from the unique nanobelt array structure, abundant highly active bridge S22- sites and strong electronic interaction between VS4 and Ni3S2 on the heterointerface, the integrated VS4/Ni3S2/NF NBs exhibited excellent electrocatalytic hydrogen evolution activity and robust stability. The density functional theory (DFT) further revealed the reversible conversion catalysis mechanism of bridging S22- sites in VS4/Ni3S2/NF NBs during HER process. Notably, bidentate bridging SS bonds as the predominant catalytically active centers can spontaneously open once H adsorbed its surface, leading to the aggregation of negative charges on S atoms and thus facilitating the generation of H* intermediates, and spontaneously close when H* desorption is going to form H2. Our work provides fresh insights for developing potential polysulfides as high-performance hydrogen-evolving electrocatalysts for prospective clean energy production from water splitting.

18.
Nanoscale ; 14(3): 780-789, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34951433

RESUMEN

Pseudocapacitive materials are good candidates for fast charging anodes of sodium ion batteries (SIB). However, pseudocapacitive materials with a high surface area face the severe problem of low initial coulombic efficiency. In this work, micro-sized nitrogen-doped carbon (NC) coated and supported polyhedron FeCN2 networks are designed and synthesized by a facile in situ gel-swelling technique. Impressively, FeCN2@NC as an SIB anode exhibits excellent rate performance with highly reversible rate capacities of 466 and 303 mA h g-1 at 0.2 and 10.0 A g-1, respectively. Furthermore, the FeCN2@NC anode shows a high initial coulombic efficiency (ICE) of 86% due to a low surface area. Electrochemical tests and density functional theory (DFT) calculation indicate that the metastable character enables the low intercalation/conversion reaction energy for FeCN2 and further greatly promotes the fast pseudocapacitive storage mechanism for FeCN2@NC. This work provides evidence that FeCN2 is a new type of metastability induced pseudocapacitive material with high initial coulombic efficiency.

19.
J Colloid Interface Sci ; 608(Pt 1): 963-972, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34785471

RESUMEN

The practical applications of lithium sulfur battery is impeded by the lithium polysulfide shuttling and sluggish redox kinetics. To address the issues, herein, a multifunctional host is developed by the combination of nitrogen, phosphorus co-doped carbon fiber (NPCF) and CoS2 towards boost the soluble polysulfides adsorption and transformation. Benefiting from the NPCF originated from biomass cattail fibers, a high conductive network is provided, and shuttle effect is reduced due to the strong chemical interaction between abundant heteroatom polar sites and lithium polysulfides. Moreover, the electrocatalytic CoS2 on the carbon skeleton facilitate lithium polysulfides conversion and lithium sulfide deposition based on the density functional theory calculations and experiments. The efficient lithium polysulfides entrapment and subsequent electrocatalytic conversion improve dynamic stability during cycling, especially for rate capability. With these advantageous features, the electrode with NPCF/CoS2 host can deliver a good rate capability (903 and 782 mAh g-1 at 1C and 2C, respectively) and stable cycling performance with an ultra-low capacity decay of 0.014% per cycle at 1C. Notably, the cell can achieve a high areal capacity of 4.96 mA h cm-2 under an elevated sulfur loading of 5.0 mg cm-2. Overall, the improvement on the electrochemical performance ascertains the validity of the design strategy based on synergy engineering, which is a highly suitable approach for energy storage and conversion application.

20.
J Comput Chem ; 32(7): 1449-55, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21264880

RESUMEN

The mechanism for the reaction of the cyanogen radical (CN) with the cyanomidyl radical (HNCN) has been investigated theoretically. The electronic structure information of the singlet and triplet potential energy surfaces (PESs) is obtained at the B3LYP/6-311+G(3df,2p) level, and the single-point energies are refined at the CCSD(T)/6-311+G(3df,2p) level as well as by multilevel MCG3-MPWB method. The calculations show that the C atom of CN additions to middle- and end-N atoms of HNCN are two barrierless association processes leading to the energy-rich intermediates IM1 HN(CN)CN and IM2 HNCNCN, respectively, on the singlet PES. The higher barriers of the subsequent isomerization and dissociation channels from IM1 and IM2 indicate that these two intermediates, which have considerably thermodynamic and kinetic stability, are the dominant product at high pressure. While at low pressure, the most favorable product is P(2) H + NCNCN, which will be formed from both IM1 and IM2 via direct dissociation processes by the H-N bond rupture, and the secondary feasible product is P(4) HCN + (1) NCN, while P(5) HCCN + N(2) and P(6) HCNC + N(2) are the least competitive products. On the triplet PES, P(14) NCNC + HN may be a comparable competitive product at high temperature. In addition, the comparison between the mechanisms of the CN + HNCN and OH + HNCN reactions is made. The present results will enrich our understanding of the chemistry of the HNCN radical in combustion processes and interstellar space.


Asunto(s)
Cianamida/química , Nitrilos/química , Teoría Cuántica , Radicales Libres/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA