Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Primatol ; 78(6): 626-45, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26800493

RESUMEN

Ecological complexity has been proposed to play a crucial role in primate brain-size evolution. However, detailed quantification of ecological complexity is still limited. Here we assess the spatio-temporal distribution of tropical fruits and young leaves, two primary chimpanzee (Pan troglodytes) foods, focusing on the predictability of their availability in individual trees. Using up to 20 years of information on monthly availability of young leaf, unripe and ripe fruit in plant species consumed by chimpanzees from tropical forests in East, Central, and West Africa, we estimated: (1) the forest-wide frequency of occurrence of each food type and (2) the predictability of finding ripe fruit-bearing trees, focusing on the timing, frequency, and amount of ripe fruit present. In all three forests, at least half of all encountered trees belonged to species that chimpanzees were known to feed on. However, the proportion of these trees bearing young leaves and fruit fluctuated widely between months. Ripe fruit was the most ephemeral food source, and trees that had more than half of their crown filled were at least nine times scarcer than other trees. In old growth forests only one large ripe fruit crop was on average encountered per 10 km. High levels of inter-individual variation in the number of months that fruit was present existed, and in some extreme cases individuals bore ripe fruit more than seven times as often as conspecifics. Some species showed substantially less variation in such ripe fruit production frequencies and fruit quantity than others. We hypothesize that chimpanzees employ a suite of cognitive mechanisms, including abilities to: (1) generalize or classify food trees; (2) remember the relative metrics of quantity and frequency of fruit production across years; and (3) flexibly plan return times to feeding trees to optimize high-energy food consumption in individual trees, and efficient travel between them. Am. J. Primatol. 78:626-645, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Dieta , Frutas , Pan troglodytes , Animales , Cognición , Conducta Alimentaria , Árboles
2.
J Hum Evol ; 66: 95-106, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24373257

RESUMEN

The feeding ecology of sympatric great ape species yields valuable information for palaeodietary reconstructions in sympatric early hominin species. However, no isotopic references on sympatrically living apes and their feeding ecology are currently available. Here we present the first isotopic study on sympatric great apes, namely western lowland gorillas (Gorilla gorilla gorilla) and central chimpanzees (Pan troglodytes troglodytes) from Loango National Park, Gabon. We successfully analyzed the stable carbon and nitrogen isotope ratios in a selection of food plants (n = 31) and hair samples (n = 30) retrieved from sleeping nests to test whether niche partitioning among sympatric chimpanzees and gorillas is detectable using isotope analysis of hair. Ape hair strands with roots were sectioned into sequential segments (n = 100) to investigate temporal isotopic variation related to seasonal variations in food resources. We found significant δ(13)C differences between herbaceous plants and fruits, most likely due to canopy effects. While the δ(13)C values of chimpanzees indicate the consumption of fruit, the low δ(13)C values in gorilla hair indicate folivory, most likely the consumption of (13)C-depleted herbaceous vegetation. Our isotopic data also confirmed dietary overlap between chimpanzees and gorillas, which varied by season. Gorillas showed significant variation in δ(13)C values in response to season due to shifting proportions of herbaceous plants versus fruits. In chimpanzees, significant seasonal variation in δ(15)N was likely related to the seasonal availability of fruit species with particularly high δ(15)N values. In summary, we found isotopic evidence for niche partitioning and seasonal dietary variation among sympatric great apes at Loango. These findings provide a valuable reference for palaeodietary research on fossil hominins using δ(13)C analyses, particularly for studies focusing on sympatric taxa and on temporal isotopic variation within incremental tissues such as tooth enamel.


Asunto(s)
Dieta , Gorilla gorilla/fisiología , Pan troglodytes/fisiología , Animales , Isótopos de Carbono/metabolismo , Conducta Alimentaria , Gabón , Cabello/química , Masculino , Espectrometría de Masas , Isótopos de Nitrógeno/metabolismo , Estaciones del Año , Simpatría
3.
Ecol Evol ; 3(9): 2903-16, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24101982

RESUMEN

Wildlife managers are urgently searching for improved sociodemographic population assessment methods to evaluate the effectiveness of implemented conservation activities. These need to be inexpensive, appropriate for a wide spectrum of species and straightforward to apply by local staff members with minimal training. Furthermore, conservation management would benefit from single approaches which cover many aspects of population assessment beyond only density estimates, to include for instance social and demographic structure, movement patterns, or species interactions. Remote camera traps have traditionally been used to measure species richness. Currently, there is a rapid move toward using remote camera trapping in density estimation, community ecology, and conservation management. Here, we demonstrate such comprehensive population assessment by linking remote video trapping, spatially explicit capture-recapture (SECR) techniques, and other methods. We apply it to three species: chimpanzees Pan troglodytes troglodytes, gorillas Gorilla gorilla gorilla, and forest elephants Loxodonta cyclotis in Loango National Park, Gabon. All three species exhibited considerable heterogeneity in capture probability at the sex or group level and density was estimated at 1.72, 1.2, and 1.37 individuals per km(2) and male to female sex ratios were 1:2.1, 1:3.2, and 1:2 for chimpanzees, gorillas, and elephants, respectively. Association patterns revealed four, eight, and 18 independent social groups of chimpanzees, gorillas, and elephants, respectively: key information for both conservation management and studies on the species' ecology. Additionally, there was evidence of resident and nonresident elephants within the study area and intersexual variation in home range size among elephants but not chimpanzees. Our study highlights the potential of combining camera trapping and SECR methods in conducting detailed population assessments that go far beyond documenting species diversity patterns or estimating single species population size. Our study design is widely applicable to other species and spatial scales, and moderately trained staff members can collect and process the required data. Furthermore, assessments using the same method can be extended to include several other ecological, behavioral, and demographic aspects: fission and fusion dynamics and intergroup transfers, birth and mortality rates, species interactions, and ranging patterns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA