Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Analyst ; 147(15): 3593-3603, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35822546

RESUMEN

Sterility testing is a laborious and slow process to detect contaminants present in drug products. Raman spectroscopy is a promising label-free tool to detect microorganisms and thus gaining relevance as a future alternative culture-free method for sterility testing in the pharmaceutical industry. However, reaching detection limits similar to standard procedures while keeping a high accuracy remains challenging, due to weak bacterial Raman signals. In this work, we show a new non-invasive approach focusing on detection of different bacteria in concentrations below 100 CFU per ml within drug product containers using Raman spectroscopy and multivariate data analysis. Even though Raman spectra from drug product with and without bacteria are similar, a partial least squared discriminant analysis (PLS-DA) model shows great performance to distinguish samples with bacterial contaminants in concentrations down to 10 CFU per ml. We used spiked samples with bacterial spores for model validation achieving a detection accuracy of 99%. Our results indicate the great potential of this rapid, and cost-effective approach to be used in quality control in the pharmaceutical industry.


Asunto(s)
Infertilidad , Espectrometría Raman , Bacterias , Análisis Discriminante , Humanos , Análisis de los Mínimos Cuadrados , Análisis Multivariante , Preparaciones Farmacéuticas , Espectrometría Raman/métodos
2.
J Dent Res ; 99(5): 544-551, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32156176

RESUMEN

The canonical Wnt/ß-catenin signaling pathway is crucial for reparative dentinogenesis following tooth damage, and the modulation of this pathway affects the rate and extent of reparative dentine formation in damaged mice molars by triggering the natural process of dentinogenesis. Pharmacological stimulation of Wnt/ß-catenin signaling activity by small-molecule GSK-3 inhibitor drugs following pulp exposure in mouse molars results in reparative dentinogenesis. The creation of similar but larger lesions in rat molars shows that the adenosine triphosphate (ATP)-competitive GSK-3 inhibitor, CHIR99021 (CHIR), and the ATP noncompetitive inhibitor, Tideglusib (TG), can equally enhance reparative dentine formation to fully repair an area of dentine damage up to 10 times larger, mimicking the size of small lesions in humans. To assess the chemical composition of this newly formed dentine and to compare its structure with surrounding native dentine and alveolar bone, Raman microspectroscopy analysis is used. We show that the newly formed dentine comprises equal carbonate to phosphate ratios and mineral to matrix ratios to that of native dentine, both being significantly different from bone. For an effective dentine repair, the activity of the drugs needs to be restricted to the region of damage. To investigate the range of drug-induced Wnt-activity within the dental pulp, RNA of short-term induced (24-h) molars is extracted from separated roots and crowns, and quantitative Axin2 expression is assayed. We show that the activation of Wnt/ß-catenin signaling is highly restricted to pulp cells in the immediate location of the damage in the coronal pulp tissue with no drug action detected in the root pulp. These results provide further evidence that this simple method of enhancement of natural reparative dentinogenesis has the potential to be translated into a clinical direct capping approach.


Asunto(s)
Regeneración , Animales , Pulpa Dental , Recubrimiento de la Pulpa Dental , Dentina , Dentina Secundaria , Dentinogénesis , Glucógeno Sintasa Quinasa 3 , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA