Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(19): 3598-3612.e7, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36113480

RESUMEN

Gene transcription is a highly regulated process in all animals. In Drosophila, two major transcriptional programs, housekeeping and developmental, have promoters with distinct regulatory compatibilities and nucleosome organization. However, it remains unclear how the differences in chromatin structure relate to the distinct regulatory properties and which chromatin remodelers are required for these programs. Using rapid degradation of core remodeler subunits in Drosophila melanogaster S2 cells, we demonstrate that developmental gene transcription requires SWI/SNF-type complexes, primarily to maintain distal enhancer accessibility. In contrast, wild-type-level housekeeping gene transcription requires the Iswi and Ino80 remodelers to maintain nucleosome positioning and phasing at promoters. These differential remodeler dependencies relate to different DNA-sequence-intrinsic nucleosome affinities, which favor a default ON state for housekeeping but a default OFF state for developmental gene transcription. Overall, our results demonstrate how different transcription-regulatory strategies are implemented by DNA sequence, chromatin structure, and remodeler activity.


Asunto(s)
Cromatina , Nucleosomas , Animales , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Tareas del Hogar , Nucleosomas/genética , Nucleosomas/metabolismo
2.
Nature ; 606(7913): 406-413, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650434

RESUMEN

All multicellular organisms rely on differential gene transcription regulated by genomic enhancers, which function through cofactors that are recruited by transcription factors1,2. Emerging evidence suggests that not all cofactors are required at all enhancers3-5, yet whether these observations reflect more general principles or distinct types of enhancers remained unknown. Here we categorized human enhancers by their cofactor dependencies and show that these categories provide a framework to understand the sequence and chromatin diversity of enhancers and their roles in different gene-regulatory programmes. We quantified enhancer activities along the entire human genome using STARR-seq6 in HCT116 cells, following the rapid degradation of eight cofactors. This analysis identified different types of enhancers with distinct cofactor requirements, sequences and chromatin properties. Some enhancers were insensitive to the depletion of the core Mediator subunit MED14 or the bromodomain protein BRD4 and regulated distinct transcriptional programmes. In particular, canonical Mediator7 seemed dispensable for P53-responsive enhancers, and MED14-depleted cells induced endogenous P53 target genes. Similarly, BRD4 was not required for the transcription of genes that bear CCAAT boxes and a TATA box (including histone genes and LTR12 retrotransposons) or for the induction of heat-shock genes. This categorization of enhancers through cofactor dependencies reveals distinct enhancer types that can bypass broadly utilized cofactors, which illustrates how alternative ways to activate transcription separate gene expression programmes and provide a conceptual framework to understand enhancer function and regulatory specificity.


Asunto(s)
Elementos de Facilitación Genéticos , Factores de Transcripción , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Humanos , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
3.
EMBO J ; 42(10): e113519, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37013908

RESUMEN

Recruitment of RNA polymerase II (Pol II) to promoters is essential for transcription. Despite conflicting evidence, the Pol II preinitiation complex (PIC) is often thought to have a uniform composition and to assemble at all promoters via an identical mechanism. Here, using Drosophila melanogaster S2 cells as a model, we demonstrate that different promoter classes function via distinct PICs. Promoter DNA of developmentally regulated genes readily associates with the canonical Pol II PIC, whereas housekeeping promoters do not, and instead recruit other factors such as DREF. Consistently, TBP and DREF are differentially required by distinct promoter types. TBP and its paralog TRF2 also function at different promoter types in a partially redundant manner. In contrast, TFIIA is required at all promoters, and we identify factors that can recruit and/or stabilize TFIIA at housekeeping promoters and activate transcription. Promoter activation by tethering these factors is sufficient to induce the dispersed transcription initiation patterns characteristic of housekeeping promoters. Thus, different promoter classes utilize distinct mechanisms of transcription initiation, which translate into different focused versus dispersed initiation patterns.


Asunto(s)
Proteínas de Drosophila , Factores de Transcripción , Animales , Factores de Transcripción/genética , Factor de Transcripción TFIIA/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Proteínas de Drosophila/genética
4.
Mol Biol Cell ; 28(23): 3360-3370, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28931597

RESUMEN

Eukaryotic transcription occurs in bursts that vary in size and frequency, but the contribution of individual core promoter elements to transcriptional bursting is not known. Here we analyze the relative contributions to bursting of the individual core promoter elements-CCAAT, TATAA-like, Sp1BS, and Inr-of an MHC class I gene in primary B-cells during both basal and activated transcription. The TATAA-like, Sp1BS, and Inr elements all function as negative regulators of transcription, and each was found to contribute differentially to the overall bursting pattern of the promoter during basal transcription. Whereas the Sp1BS element regulates burst size, the Inr element regulates burst frequency. The TATAA-like element contributes to both. Surprisingly, each element has a distinct role in bursting during transcriptional activation by γ-interferon. The CCAAT element does not contribute significantly to the constitutive transcriptional dynamics of primary B-cells, but modulates both burst size and frequency in response to γ-interferon activation. The ability of core promoter elements to modulate transcriptional bursting individually allows combinatorial fine-tuning of the level of MHC class I gene expression in response to intrinsic and extrinsic signals.


Asunto(s)
Regulación de la Expresión Génica/genética , Regiones Promotoras Genéticas/fisiología , Activación Transcripcional/genética , Linfocitos B , Humanos , Interferón gamma/metabolismo , Regiones Promotoras Genéticas/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Activación Transcripcional/fisiología
5.
PLoS One ; 11(9): e0163024, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27669508

RESUMEN

Plant adaptation to external pressures depends on functional diversity in cytochrome P450 (CYP) enzymes. CYPs contain structural domains necessary for the characteristic P450 fold that allows monooxygenation, but they also have great variation in substrate binding affinity. Plant genomes typically contain hundreds of CYPs that contribute to essential functions and species-specific metabolism. The CYP72A subfamily is conserved in angiosperms but its contribution to physiological functions is largely unknown. With genomic information available for many plants, a focused analysis of CYP subfamily diversity is important to understand the contributions of these enzymes to plant evolution. This study examines the extent to which independent gene duplication and evolution have contributed to structural diversification of CYP72A enzymes in different plant lineages. CYP72A genes are prevalent across angiosperms, but the number of genes within each genome varies greatly. The prevalence of CYP72As suggest that the last common ancestor of flowering plants contained a CYP72A sequence, but gene duplication and retention has varied greatly for this CYP subfamily. Sequence comparisons show that CYP72As are involved in species-specific metabolic functions in some plants while there is likely functional conservation between closely related species. Analysis of structural and functional domains within groups of CYP72As reveals clade-specific residues that contribute to functional constraints within subsets of CYP72As. This study provides a phylogenetic framework that allows comparisons of structural features within subsets of the CYP72A subfamily. We examined a large number of sequences from a broad collection of plant species to detect patterns of functional conservation across the subfamily. The evolutionary relationships between CYPs in plant genomes are an important component in understanding the evolution of biochemical diversity in plants.

6.
Artículo en Inglés | MEDLINE | ID: mdl-25340050

RESUMEN

Advances in DNA synthesis have enabled the construction of artificial genes, gene circuits, and genomes of bacterial scale. Freedom in de novo design of synthetic constructs provides significant power in studying the impact of mutations in sequence features, and verifying hypotheses on the functional information that is encoded in nucleic and amino acids. To aid this goal, a large number of software tools of variable sophistication have been implemented, enabling the design of synthetic genes for sequence optimization based on rationally defined properties. The first generation of tools dealt predominantly with singular objectives such as codon usage optimization and unique restriction site incorporation. Recent years have seen the emergence of sequence design tools that aim to evolve sequences toward combinations of objectives. The design of optimal protein-coding sequences adhering to multiple objectives is computationally hard, and most tools rely on heuristics to sample the vast sequence design space. In this review, we study some of the algorithmic issues behind gene optimization and the approaches that different tools have adopted to redesign genes and optimize desired coding features. We utilize test cases to demonstrate the efficiency of each approach, as well as identify their strengths and limitations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA