Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Cell ; 157(2): 329-339, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24725402

RESUMEN

Recently, A/H5N1 influenza viruses were shown to acquire airborne transmissibility between ferrets upon targeted mutagenesis and virus passage. The critical genetic changes in airborne A/Indonesia/5/05 were not yet identified. Here, five substitutions proved to be sufficient to determine this airborne transmission phenotype. Substitutions in PB1 and PB2 collectively caused enhanced transcription and virus replication. One substitution increased HA thermostability and lowered the pH of membrane fusion. Two substitutions independently changed HA binding preference from α2,3-linked to α2,6-linked sialic acid receptors. The loss of a glycosylation site in HA enhanced overall binding to receptors. The acquired substitutions emerged early during ferret passage as minor variants and became dominant rapidly. Identification of substitutions that are essential for airborne transmission of avian influenza viruses between ferrets and their associated phenotypes advances our fundamental understanding of virus transmission and will increase the value of future surveillance programs and public health risk assessments.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/fisiología , Gripe Humana/transmisión , Gripe Humana/virología , Sustitución de Aminoácidos , Animales , Hurones , Genoma Viral , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Mutación , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Receptores Virales/metabolismo , Selección Genética
2.
PLoS Pathog ; 20(2): e1011942, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38408092

RESUMEN

Highly pathogenic avian influenza viruses (HPAIVs) cause severe hemorrhagic disease in terrestrial poultry and are a threat to the poultry industry, wild life, and human health. HPAIVs arise from low pathogenic avian influenza viruses (LPAIVs), which circulate in wild aquatic birds. HPAIV emergence is thought to occur in poultry and not wild aquatic birds, but the reason for this species-restriction is not known. We hypothesized that, due to species-specific tropism and replication, intrahost HPAIV selection is favored in poultry and disfavored in wild aquatic birds. We tested this hypothesis by co-inoculating chickens, representative of poultry, and ducks, representative of wild aquatic birds, with a mixture of H7N7 HPAIV and LPAIV, mimicking HPAIV emergence in an experimental setting. Virus selection was monitored in swabs and tissues by RT-qPCR and immunostaining of differential N-terminal epitope tags that were added to the hemagglutinin protein. HPAIV was selected in four of six co-inoculated chickens, whereas LPAIV remained the major population in co-inoculated ducks on the long-term, despite detection of infectious HPAIV in tissues at early time points. Collectively, our data support the hypothesis that HPAIVs are more likely to be selected at the intrahost level in poultry than in wild aquatic birds and point towards species-specific differences in HPAIV and LPAIV tropism and replication levels as possible explanations.


Asunto(s)
Subtipo H7N7 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Humanos , Pollos , Patos , Virus de la Influenza A/genética , Animales Salvajes , Aves de Corral
3.
Nature ; 586(7830): 509-515, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32967005

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.


Asunto(s)
Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/prevención & control , Modelos Animales de Enfermedad , Pandemias/prevención & control , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/prevención & control , Animales , Betacoronavirus/efectos de los fármacos , Betacoronavirus/inmunología , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/inmunología , Hurones/virología , Humanos , Mesocricetus/virología , Ratones , Neumonía Viral/inmunología , Primates/virología , SARS-CoV-2 , Vacunas Virales/inmunología
4.
PLoS Pathog ; 19(3): e1011214, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36897923

RESUMEN

Central nervous system (CNS) disease is the most common extra-respiratory tract complication of influenza A virus infections in humans. Remarkably, zoonotic highly pathogenic avian influenza (HPAI) H5N1 virus infections are more often associated with CNS disease than infections with seasonal influenza viruses. Evolution of avian influenza viruses has been extensively studied in the context of respiratory infections, but evolutionary processes in CNS infections remain poorly understood. We have previously observed that the ability of HPAI A/Indonesia/5/2005 (H5N1) virus to replicate in and spread throughout the CNS varies widely between individual ferrets. Based on these observations, we sought to understand the impact of entrance into and replication within the CNS on the evolutionary dynamics of virus populations. First, we identified and characterized three substitutions-PB1 E177G and A652T and NP I119M - detected in the CNS of a ferret infected with influenza A/Indonesia/5/2005 (H5N1) virus that developed a severe meningo-encephalitis. We found that some of these substitutions, individually or collectively, resulted in increased polymerase activity in vitro. Nevertheless, in vivo, the virus bearing the CNS-associated mutations retained its capacity to infect the CNS but showed reduced dispersion to other anatomical sites. Analyses of viral diversity in the nasal turbinate and olfactory bulb revealed the lack of a genetic bottleneck acting on virus populations accessing the CNS via this route. Furthermore, virus populations bearing the CNS-associated mutations showed signs of positive selection in the brainstem. These features of dispersion to the CNS are consistent with the action of selective processes, underlining the potential for H5N1 viruses to adapt to the CNS.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Hurones , Sistema Nervioso Central , Zoonosis
5.
Proc Natl Acad Sci U S A ; 119(42): e2211616119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215486

RESUMEN

Influenza B virus primarily infects humans, causing seasonal epidemics globally. Two antigenic variants-Victoria-like and Yamagata-like-were detected in the 1980s, of which the molecular basis of emergence is still incompletely understood. Here, the antigenic properties of a unique collection of historical virus isolates, sampled from 1962 to 2000 and passaged exclusively in mammalian cells to preserve antigenic properties, were determined with the hemagglutination inhibition assay and an antigenic map was built to quantify and visualize the divergence of the lineages. The antigenic map revealed only three distinct antigenic clusters-Early, Victoria, and Yamagata-with relatively little antigenic diversity in each cluster until 2000. Viruses with Victoria-like antigenic properties emerged around 1972 and diversified subsequently into two genetic lineages. Viruses with Yamagata-like antigenic properties evolved from one lineage and became clearly antigenically distinct from the Victoria-like viruses around 1988. Recombinant mutant viruses were tested to show that insertions and deletions (indels), as observed frequently in influenza B virus hemagglutinin, had little effect on antigenic properties. In contrast, amino-acid substitutions at positions 148, 149, 150, and 203, adjacent to the hemagglutinin receptor binding site, determined the main antigenic differences between the Early, Victoria-like, and Yamagata-like viruses. Surprisingly, substitutions at two of the four positions reverted in recent viruses of the Victoria lineage, resulting in antigenic properties similar to viruses circulating ∼50 y earlier. These data shed light on the antigenic diversification of influenza viruses and suggest there may be limits to the antigenic evolution of influenza B virus.


Asunto(s)
Gripe Humana , Animales , Variación Antigénica/genética , Sitios de Unión , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hemaglutininas , Humanos , Virus de la Influenza B/genética , Mamíferos , Filogenia
6.
PLoS Pathog ; 18(3): e1010340, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35255100

RESUMEN

SARS-CoV-2 attaches to angiotensin-converting enzyme 2 (ACE2) to gain entry into cells after which the spike protein is cleaved by the transmembrane serine protease 2 (TMPRSS2) to facilitate viral-host membrane fusion. ACE2 and TMPRSS2 expression profiles have been analyzed at the genomic, transcriptomic, and single-cell RNAseq levels. However, transcriptomic data and actual protein validation convey conflicting information regarding the distribution of the biologically relevant protein receptor in whole tissues. To describe the organ-level architecture of receptor expression, related to the ability of ACE2 and TMPRSS2 to mediate infectivity, we performed a volumetric analysis of whole Syrian hamster lung lobes. Lung tissue of infected and control animals was stained using antibodies against ACE2 and TMPRSS2, combined with SARS-CoV-2 nucleoprotein staining. This was followed by light-sheet microscopy imaging to visualize their expression and related infection patterns. The data demonstrate that infection is restricted to sites containing both ACE2 and TMPRSS2, the latter is expressed in the primary and secondary bronchi whereas ACE2 is predominantly observed in the bronchioles and alveoli. Conversely, infection completely overlaps where ACE2 and TMPRSS2 co-localize in the tertiary bronchi, bronchioles, and alveoli.


Asunto(s)
COVID-19 , Enzima Convertidora de Angiotensina 2/genética , Animales , Cricetinae , Pulmón/metabolismo , Mesocricetus , SARS-CoV-2
7.
Glycobiology ; 33(10): 784-800, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37471650

RESUMEN

Recent human H3N2 influenza A viruses have evolved to employ elongated glycans terminating in α2,6-linked sialic acid as their receptors. These glycans are displayed in low abundancies by (humanized) Madin-Darby Canine Kidney cells, which are commonly employed to propagate influenza A virus, resulting in low or no viral propagation. Here, we examined whether the overexpression of the glycosyltransferases ß-1,3-N-acetylglucosaminyltransferase and ß-1,4-galactosyltransferase 1, which are responsible for the elongation of poly-N-acetyllactosamines (LacNAcs), would result in improved A/H3N2 propagation. Stable overexpression of ß-1,3-N-acetylglucosaminyltransferase and ß-1,4-galactosyltransferase 1 in Madin-Darby Canine Kidney and "humanized" Madin-Darby Canine Kidney cells was achieved by lentiviral integration and subsequent antibiotic selection and confirmed by qPCR and protein mass spectrometry experiments. Flow cytometry and glycan mass spectrometry experiments using the ß-1,3-N-acetylglucosaminyltransferase and/or ß-1,4-galactosyltransferase 1 knock-in cells demonstrated increased binding of viral hemagglutinins and the presence of a larger number of LacNAc repeating units, especially on "humanized" Madin-Darby Canine Kidney-ß-1,3-N-acetylglucosaminyltransferase cells. An increase in the number of glycan receptors did, however, not result in a greater infection efficiency of recent human H3N2 viruses. Based on these results, we propose that H3N2 influenza A viruses require a low number of suitable glycan receptors to infect cells and that an increase in the glycan receptor display above this threshold does not result in improved infection efficiency.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A , Virus de la Influenza A , Humanos , Animales , Perros , Subtipo H3N2 del Virus de la Influenza A/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetil-Lactosamina Sintasa/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza , Virus de la Influenza A/metabolismo , Células de Riñón Canino Madin Darby , Polisacáridos/química
8.
J Gen Virol ; 104(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37650875

RESUMEN

Influenza A viruses of the H2N2 subtype sparked a pandemic in 1957 and circulated in humans until 1968. Because A/H2N2 viruses still circulate in wild birds worldwide and human population immunity is low, the transmissibility of six avian A/H2N2 viruses was investigated in the ferret model. None of the avian A/H2N2 viruses was transmitted between ferrets, suggesting that their pandemic risk may be low. The transmissibility, receptor binding preference and haemagglutinin (HA) stability of human A/H2N2 viruses were also investigated. Human A/H2N2 viruses from 1957 and 1958 bound to human-type α2,6-linked sialic acid receptors, but the 1958 virus had a more stable HA, indicating adaptation to replication and spread in the new host. This increased stability was caused by a previously unknown stability substitution G205S in the 1958 H2N2 HA, which became fixed in A/H2N2 viruses after 1958. Although individual substitutions were identified that affected the HA receptor binding and stability properties, they were not found to have a substantial effect on transmissibility of A/H2N2 viruses via the air in the ferret model. Our data demonstrate that A/H2N2 viruses continued to adapt during the first year of pandemic circulation in humans, similar to what was previously shown for the A/H1N1pdm09 virus.


Asunto(s)
Subtipo H2N2 del Virus de la Influenza A , Virus de la Influenza A , Animales , Humanos , Subtipo H2N2 del Virus de la Influenza A/genética , Hurones , Pandemias
9.
J Virol ; 96(6): e0195921, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35107371

RESUMEN

Seasonal influenza vaccination takes into account primarily hemagglutinin (HA)-specific neutralizing antibody responses. However, the accumulation of substitutions in the antigenic regions of HA (i.e., antigenic drift) occasionally results in a mismatch between the vaccine and circulating strains. To prevent poor vaccine performance, we investigated whether an antigenically matched neuraminidase (NA) may compensate for reduced vaccine efficacy due to a mismatched HA. Ferrets were vaccinated twice with adjuvanted split inactivated influenza vaccines containing homologous HA and NA (vacH3N2), only homologous HA (vacH3N1), only homologous NA (vacH1N2), heterologous HA and NA (vacH1N1), or phosphate-buffered saline (vacPBS), followed by challenge with H3N2 virus (A/Netherlands/16190/1968). Ferrets vaccinated with homologous HA (vacH3N2 and vacH3N1) displayed minimum fever and weight loss compared to vacH1N1 and vacPBS ferrets, while ferrets vaccinated with NA-matched vacH1N2 displayed intermediate fever and weight loss. Vaccination with vacH1N2 further led to a reduction in virus shedding from the nose and undetectable virus titers in the lower respiratory tract, similarly to when the homologous vacH3N2 was used. Some protection was observed upon vacH1N1 vaccination, but this was not comparable to that observed for vacH1N2, again highlighting the important role of NA in vaccine-induced protection. These results illustrate that NA antibodies can prevent severe disease caused by influenza virus infection and that an antigenically matched NA in seasonal vaccines might prevent lower respiratory tract complications. This underlines the importance of considering NA during the yearly vaccine strain selection process, which may be particularly beneficial in seasons when the HA component of the vaccine is mismatched. IMPORTANCE Despite the availability of vaccines, influenza virus infections continue to cause substantial morbidity and mortality in humans. Currently available influenza vaccines take primarily the hemagglutinin (HA) into account, but the highly variable nature of this protein as a result of antigenic drift has led to a recurrent decline in vaccine effectiveness. While the protective effect of neuraminidase (NA) antibodies has been highlighted by several studies, there are no requirements with regard to quantity or quality of NA in licensed vaccines, and NA immunity remains largely unexploited. Since antigenic changes in HA and NA are thought to occur asynchronously, NA immunity could compensate for reduced vaccine efficacy when drift in HA occurs. By matching and mismatching the HA and NA components of monovalent split inactivated vaccines, we demonstrated the potential of NA immunity to protect against disease, virus replication in the lower respiratory tract, and virus shedding in the ferret model.


Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Neuraminidasa , Infecciones por Orthomyxoviridae , Animales , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Hurones , Hemaglutininas/inmunología , Subtipo H3N2 del Virus de la Influenza A , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/normas , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Estaciones del Año , Vacunas de Productos Inactivados/inmunología
10.
PLoS Pathog ; 17(9): e1009566, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34555124

RESUMEN

The hemagglutinin (HA) of A/H3N2 pandemic influenza viruses (IAVs) of 1968 differed from its inferred avian precursor by eight amino acid substitutions. To determine their phenotypic effects, we studied recombinant variants of A/Hong Kong/1/1968 virus containing either human-type or avian-type amino acids in the corresponding positions of HA. The precursor HA displayed receptor binding profile and high conformational stability typical for duck IAVs. Substitutions Q226L and G228S, in addition to their known effects on receptor specificity and replication, marginally decreased HA stability. Substitutions R62I, D63N, D81N and N193S reduced HA binding avidity. Substitutions R62I, D81N and A144G promoted viral replication in human airway epithelial cultures. Analysis of HA sequences revealed that substitutions D63N and D81N accompanied by the addition of N-glycans represent common markers of avian H3 HA adaptation to mammals. Our results advance understanding of genotypic and phenotypic changes in IAV HA required for avian-to-human adaptation and pandemic emergence.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Aviar/genética , Gripe Humana/genética , Zoonosis Virales/genética , Animales , Patos , Humanos , Pandemias
11.
PLoS Pathog ; 17(2): e1009282, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33556147

RESUMEN

Receptor binding studies on sarbecoviruses would benefit from an available toolkit of recombinant spike proteins, or domains thereof, that recapitulate receptor binding properties of native viruses. We hypothesized that trimeric Receptor Binding Domain (RBD) proteins would be suitable candidates to study receptor binding properties of SARS-CoV-1 and -2. Here we created monomeric and trimeric fluorescent RBD proteins, derived from adherent HEK293T, as well as in GnTI-/- mutant cells, to analyze the effect of complex vs high mannose glycosylation on receptor binding. The results demonstrate that trimeric, complex glycosylated proteins are superior in receptor binding compared to monomeric and immaturely glycosylated variants. Although differences in binding to commonly used cell lines were minimal between the different RBD preparations, substantial differences were observed when respiratory tissues of experimental animals were stained. The RBD trimers demonstrated distinct ACE2 expression profiles in bronchiolar ducts and confirmed the higher binding affinity of SARS-CoV-2 over SARS-CoV-1. Our results show that complex glycosylated trimeric RBD proteins are attractive to analyze sarbecovirus receptor binding and explore ACE2 expression profiles in tissues.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Multimerización de Proteína , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células A549 , Enzima Convertidora de Angiotensina 2/genética , Animales , Chlorocebus aethiops , Perros , Glicosilación , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Mesocricetus , Ratones , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero
12.
J Infect Dis ; 223(12): 2020-2028, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34043806

RESUMEN

Effective clinical intervention strategies for coronavirus disease 2019 (COVID-19) are urgently needed. Although several clinical trials have evaluated use of convalescent plasma containing virus-neutralizing antibodies, levels of neutralizing antibodies are usually not assessed and the effectiveness has not been proven. We show that hamsters treated prophylactically with a 1:2560 titer of human convalescent plasma or a 1:5260 titer of monoclonal antibody were protected against weight loss, had a significant reduction of virus replication in the lungs, and showed reduced pneumonia. Interestingly, this protective effect was lost with a titer of 1:320 of convalescent plasma. These data highlight the importance of screening plasma donors for high levels of neutralizing antibodies. Our data show that prophylactic administration of high levels of neutralizing antibody, either monoclonal or from convalescent plasma, prevent severe SARS-CoV-2 pneumonia in a hamster model, and could be used as an alternative or complementary to other antiviral treatments for COVID-19.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , COVID-19/terapia , Pulmón/patología , SARS-CoV-2/inmunología , Replicación Viral/efectos de los fármacos , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Neutralizantes/administración & dosificación , COVID-19/inmunología , Cricetinae , Modelos Animales de Enfermedad , Humanos , Inmunización Pasiva , Pulmón/efectos de los fármacos , Esparcimiento de Virus/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos , Sueroterapia para COVID-19
13.
Indoor Air ; 31(6): 1874-1885, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34124803

RESUMEN

Viral respiratory tract infections are a leading cause of morbidity and mortality worldwide. Unfortunately, the transmission routes and shedding kinetics of respiratory viruses remain poorly understood. Air sampling techniques to quantify infectious viruses in the air are indispensable to improve intervention strategies to control and prevent spreading of respiratory viruses. Here, the collection of infectious virus with the six-stage Andersen cascade impactor was optimized with semi-solid gelatin as collection surface. Subsequently, the collection efficiency of the cascade impactor, the SKC BioSampler, and an in-house developed electrostatic precipitator was compared. In an in vitro set-up, influenza A virus, human metapneumovirus, parainfluenza virus type 3, and respiratory syncytial virus were nebulized and the amount of collected infectious virus and viral RNA was quantified with each air sampler. Whereas only low amounts of virus were collected using the electrostatic precipitator, high amounts were collected with the BioSampler and cascade impactor. The BioSampler allowed straight-forward sampling in liquid medium, whereas the more laborious cascade impactor allowed size fractionation of virus-containing particles. Depending on the research question, either the BioSampler or the cascade impactor can be applied in laboratory and field settings, such as hospitals to gain more insight into the transmission routes of respiratory viruses.


Asunto(s)
Microbiología del Aire , Contaminación del Aire Interior , Aerosoles , Virus de la Influenza A/aislamiento & purificación , Metapneumovirus/aislamiento & purificación , Virus de la Parainfluenza 3 Humana/aislamiento & purificación , Virus Sincitiales Respiratorios/aislamiento & purificación
14.
J Virol ; 92(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29212934

RESUMEN

Exchange of gene segments through reassortment is a major feature of influenza A virus evolution and frequently contributes to the emergence of novel epidemic, pandemic, and zoonotic strains. It has long been evident that viral diversification through reassortment is constrained by genetic incompatibility between divergent parental viruses. In contrast, the role of virus-extrinsic factors in determining the likelihood of reassortment has remained unclear. To evaluate the impact of such factors in the absence of confounding effects of segment mismatch, we previously reported an approach in which reassortment between wild-type (wt) and genetically tagged variant (var) viruses of the same strain is measured. Here, using wt/var systems in the A/Netherlands/602/2009 (pH1N1) and A/Panama/2007/99 (H3N2) strain backgrounds, we tested whether inoculation of parental viruses into distinct sites within the respiratory tract limits their reassortment. Using a ferret (Mustella putorius furo) model, either matched parental viruses were coinoculated intranasally or one virus was instilled intranasally whereas the second was instilled intratracheally. Dual intranasal inoculation resulted in robust reassortment for wt/var viruses of both strain backgrounds. In contrast, when infections were initiated simultaneously at distinct sites, strong compartmentalization of viral replication was observed and minimal reassortment was detected. The observed lack of viral spread between upper and lower respiratory tract tissues may be attributable to localized exclusion of superinfection within the host, mediated by innate immune responses. Our findings indicate that dual infections in nature are more likely to result in reassortment if viruses are seeded into similar anatomical locations and have matched tissue tropisms.IMPORTANCE Genetic exchange between influenza A viruses (IAVs) through reassortment can facilitate the emergence of antigenically drifted seasonal strains and plays a prominent role in the development of pandemics. Typical human influenza infections are concentrated in the upper respiratory tract; however, lower respiratory tract (LRT) infection is an important feature of severe cases, which are more common in the very young, the elderly, and individuals with underlying conditions. In addition to host factors, viral characteristics and mode of transmission can also increase the likelihood of LRT infection: certain zoonotic IAVs are thought to favor the LRT, and transmission via small droplets allows direct seeding into lower respiratory tract tissues. To gauge the likelihood of reassortment in coinfected hosts, we assessed the extent to which initiation of infection at distinct respiratory tract sites impacts reassortment frequency. Our results reveal that spatially distinct inoculations result in anatomical compartmentalization of infection, which in turn strongly limits reassortment.


Asunto(s)
Virus de la Influenza A/patogenicidad , Mucosa Nasal/virología , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/patogenicidad , Sobreinfección/virología , Tráquea/virología , Administración Intranasal , Animales , Perros , Femenino , Hurones , Genotipo , Virus de la Influenza A/genética , Células de Riñón Canino Madin Darby , Infecciones por Orthomyxoviridae/genética , Virus Reordenados/genética , Sobreinfección/genética , Proteínas Virales/genética
15.
PLoS Pathog ; 13(5): e1006371, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28481926

RESUMEN

Identification of cellular receptors and characterization of viral tropism in animal models have vastly improved our understanding of morbillivirus pathogenesis. However, specific aspects of viral entry, dissemination and transmission remain difficult to recapitulate in animal models. Here, we used three virologically identical but phenotypically distinct recombinant (r) canine distemper viruses (CDV) expressing different fluorescent reporter proteins for in vivo competition and airborne transmission studies in ferrets (Mustela putorius furo). Six donor ferrets simultaneously received three rCDVs expressing green, red or blue fluorescent proteins via conjunctival (ocular, Oc), intra-nasal (IN) or intra-tracheal (IT) inoculation. Two days post-inoculation sentinel ferrets were placed in physically separated adjacent cages to assess airborne transmission. All donor ferrets developed lymphopenia, fever and lethargy, showed progressively increasing systemic viral loads and were euthanized 14 to 16 days post-inoculation. Systemic replication of virus inoculated via the Oc, IN and IT routes was detected in 2/6, 5/6 and 6/6 ferrets, respectively. In five donor ferrets the IT delivered virus dominated, although replication of two or three different viruses was detected in 5/6 animals. Single lymphocytes expressing multiple fluorescent proteins were abundant in peripheral blood and lymphoid tissues, demonstrating the occurrence of double and triple virus infections. Transmission occurred efficiently and all recipient ferrets showed evidence of infection between 18 and 22 days post-inoculation of the donor ferrets. In all cases, airborne transmission resulted in replication of a single-colored virus, which was the dominant virus in the donor ferret. This study demonstrates that morbilliviruses can use multiple entry routes in parallel, and co-infection of cells during viral dissemination in the host is common. Airborne transmission was efficient, although transmission of viruses expressing a single color suggested a bottleneck event. The identity of the transmitted virus was not determined by the site of inoculation but by the viral dominance during dissemination.


Asunto(s)
Virus del Moquillo Canino/fisiología , Hurones , Infecciones por Morbillivirus/virología , Morbillivirus/fisiología , Animales , Chlorocebus aethiops , Coinfección , Genes Reporteros , Morbillivirus/patogenicidad , Infecciones por Morbillivirus/transmisión , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Células Vero , Carga Viral , Internalización del Virus
16.
Nature ; 501(7468): 560-3, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-23925116

RESUMEN

Wild waterfowl form the main reservoir of influenza A viruses, from which transmission occurs directly or indirectly to various secondary hosts, including humans. Direct avian-to-human transmission has been observed for viruses of subtypes A(H5N1), A(H7N2), A(H7N3), A(H7N7), A(H9N2) and A(H10N7) upon human exposure to poultry, but a lack of sustained human-to-human transmission has prevented these viruses from causing new pandemics. Recently, avian A(H7N9) viruses were transmitted to humans, causing severe respiratory disease and deaths in China. Because transmission via respiratory droplets and aerosols (hereafter referred to as airborne transmission) is the main route for efficient transmission between humans, it is important to gain an insight into airborne transmission of the A(H7N9) virus. Here we show that although the A/Anhui/1/2013 A(H7N9) virus harbours determinants associated with human adaptation and transmissibility between mammals, its airborne transmissibility in ferrets is limited, and it is intermediate between that of typical human and avian influenza viruses. Multiple A(H7N9) virus genetic variants were transmitted. Upon ferret passage, variants with higher avian receptor binding, higher pH of fusion, and lower thermostability were selected, potentially resulting in reduced transmissibility. This A(H7N9) virus outbreak highlights the need for increased understanding of the determinants of efficient airborne transmission of avian influenza viruses between mammals.


Asunto(s)
Hurones/virología , Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Microbiología del Aire , Animales , Aves/virología , Chlorocebus aethiops , Perros , Genoma Viral/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Humanos , Virus de la Influenza A/química , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Gripe Aviar/transmisión , Gripe Aviar/virología , Gripe Humana/transmisión , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Modelos Moleculares , Células Vero
17.
J Virol ; 90(7): 3794-9, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26792744

RESUMEN

Receptor-binding preference and stability of hemagglutinin have been implicated as crucial determinants of airborne transmission of influenza viruses. Here, amino acid substitutions previously identified to affect these traits were tested in the context of an A/H7N9 virus. Some combinations of substitutions, most notably G219S and K58I, resulted in relatively high affinity for α2,6-linked sialic acid receptor and acid and temperature stability. Thus, the hemagglutinin of the A/H7N9 virus may adopt traits associated with airborne transmission.


Asunto(s)
Sustitución de Aminoácidos , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H7N9 del Virus de la Influenza A/fisiología , Acoplamiento Viral , Línea Celular , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H7N9 del Virus de la Influenza A/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ácidos Siálicos/metabolismo , Temperatura
18.
J Virol ; 90(9): 4269-4277, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26819311

RESUMEN

UNLABELLED: Influenza A viruses are major pathogens for humans, domestic animals, and wildlife, and these viruses occasionally cross the species barrier. In spring 2014, increased mortality of harbor seals (Phoca vitulina), associated with infection with an influenza A(H10N7) virus, was reported in Sweden and Denmark. Within a few months, this virus spread to seals of the coastal waters of Germany and the Netherlands, causing the death of thousands of animals. Genetic analysis of the hemagglutinin (HA) and neuraminidase (NA) genes of this seal influenza A(H10N7) virus revealed that it was most closely related to various avian influenza A(H10N7) viruses. The collection of samples from infected seals during the course of the outbreak provided a unique opportunity to follow the adaptation of the avian virus to its new seal host. Sequence data for samples collected from 41 different seals from four different countries between April 2014 and January 2015 were obtained by Sanger sequencing and next-generation sequencing to describe the molecular epidemiology of the seal influenza A(H10N7) virus. The majority of sequence variation occurred in the HA gene, and some mutations corresponded to amino acid changes not found in H10 viruses isolated from Eurasian birds. Also, sequence variation in the HA gene was greater at the beginning than at the end of the epidemic, when a number of the mutations observed earlier had been fixed. These results imply that when an avian influenza virus jumps the species barrier from birds to seals, amino acid changes in HA may occur rapidly and are important for virus adaptation to its new mammalian host. IMPORTANCE: Influenza A viruses are major pathogens for humans, domestic animals, and wildlife. In addition to the continuous circulation of influenza A viruses among various host species, cross-species transmission of influenza A viruses occurs occasionally. Wild waterfowl and shorebirds are the main reservoir for most influenza A virus subtypes, and spillover of influenza A viruses from birds to humans or other mammalian species may result in major outbreaks. In the present study, various sequencing methods were used to elucidate the genetic changes that occurred after the introduction and subsequent spread of an avian influenza A(H10N7) virus among harbor seals of northwestern Europe by use of various samples collected during the outbreak. Such detailed knowledge of genetic changes necessary for introduction and adaptation of avian influenza A viruses to mammalian hosts is important for a rapid risk assessment of such viruses soon after they cross the species barrier.


Asunto(s)
Variación Genética , Subtipo H10N7 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Phoca/virología , Análisis Espacio-Temporal , Sustitución de Aminoácidos , Animales , Biología Computacional/métodos , Europa (Continente)/epidemiología , Genoma Viral , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Subtipo H10N7 del Virus de la Influenza A/clasificación , Filogenia , Filogeografía
20.
JACS Au ; 4(2): 607-618, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38425896

RESUMEN

Glycan binding properties of respiratory viruses have been difficult to probe due to a lack of biologically relevant glycans for binding studies. Here, a stop-and-go chemoenzymatic methodology is presented that gave access to a panel of 32 asymmetrical biantennary N-glycans having various numbers of N-acetyl lactosamine (LacNAc) repeating units capped by α2,3- or α2,6-sialosides resembling structures found in airway tissues. It exploits that the branching enzymes MGAT1 and MGAT2 can utilize unnatural UDP-2-deoxy-2-trifluoro-N-acetamido-glucose (UDP-GlcNTFA) as donor. The TFA moiety of the resulting glycans can be hydrolyzed to give GlcNH2 at one of the antennae, which temporarily blocks extension by glycosyl transferases. The N-glycans were printed as a microarray that was probed for receptor binding specificities of the evolutionary distinct human A(H3N2) and A(H1N1)pdm09 viruses. It was found that not only the sialoside type but also the length of the LacNAc chain and presentation at the α1,3-antenna of N-glycans are critical for binding. Early A(H3N2) viruses bound to 2,6-sialosides at a single LacNAc moiety at the α1,3-antenna whereas later viruses required the sialoside to be presented at a tri-LacNAc moiety. Surprisingly, most of the A(H3N2) viruses that appeared after 2021 regained binding capacity to sialosides presented at a di-LacNAc moiety. As a result, these viruses again agglutinate erythrocytes, commonly employed for antigenic characterization of influenza viruses. Human A(H1N1)pdm09 viruses have similar receptor binding properties as recent A(H3N2) viruses. The data indicate that an asymmetric N-glycan having 2,6-sialoside at a di-LacNAc moiety is a commonly employed receptor by human influenza A viruses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA