Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nature ; 623(7986): 432-441, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914932

RESUMEN

Chromatin accessibility is essential in regulating gene expression and cellular identity, and alterations in accessibility have been implicated in driving cancer initiation, progression and metastasis1-4. Although the genetic contributions to oncogenic transitions have been investigated, epigenetic drivers remain less understood. Here we constructed a pan-cancer epigenetic and transcriptomic atlas using single-nucleus chromatin accessibility data (using single-nucleus assay for transposase-accessible chromatin) from 225 samples and matched single-cell or single-nucleus RNA-sequencing expression data from 206 samples. With over 1 million cells from each platform analysed through the enrichment of accessible chromatin regions, transcription factor motifs and regulons, we identified epigenetic drivers associated with cancer transitions. Some epigenetic drivers appeared in multiple cancers (for example, regulatory regions of ABCC1 and VEGFA; GATA6 and FOX-family motifs), whereas others were cancer specific (for example, regulatory regions of FGF19, ASAP2 and EN1, and the PBX3 motif). Among epigenetically altered pathways, TP53, hypoxia and TNF signalling were linked to cancer initiation, whereas oestrogen response, epithelial-mesenchymal transition and apical junction were tied to metastatic transition. Furthermore, we revealed a marked correlation between enhancer accessibility and gene expression and uncovered cooperation between epigenetic and genetic drivers. This atlas provides a foundation for further investigation of epigenetic dynamics in cancer transitions.


Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias , Humanos , Hipoxia de la Célula , Núcleo Celular , Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Epigénesis Genética/genética , Transición Epitelial-Mesenquimal , Estrógenos/metabolismo , Perfilación de la Expresión Génica , Proteínas Activadoras de GTPasa/metabolismo , Metástasis de la Neoplasia , Neoplasias/clasificación , Neoplasias/genética , Neoplasias/patología , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de la Célula Individual , Factores de Transcripción/metabolismo
2.
Immunity ; 47(2): 323-338.e6, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28813661

RESUMEN

Tumor-associated macrophages (TAMs) are essential components of the cancer microenvironment and play critical roles in the regulation of tumor progression. Optimal therapeutic intervention requires in-depth understanding of the sources that sustain macrophages in malignant tissues. In this study, we investigated the ontogeny of TAMs in murine pancreatic ductal adenocarcinoma (PDAC) models. We identified both inflammatory monocytes and tissue-resident macrophages as sources of TAMs. Unexpectedly, significant portions of pancreas-resident macrophages originated from embryonic development and expanded through in situ proliferation during tumor progression. Whereas monocyte-derived TAMs played more potent roles in antigen presentation, embryonically derived TAMs exhibited a pro-fibrotic transcriptional profile, indicative of their role in producing and remodeling molecules in the extracellular matrix. Collectively, these findings uncover the heterogeneity of TAM origin and functions and could provide therapeutic insight for PDAC treatment.


Asunto(s)
Carcinogénesis , Carcinoma Ductal/inmunología , Macrófagos/inmunología , Páncreas/patología , Neoplasias Pancreáticas/inmunología , Animales , Carcinoma Ductal/patología , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular , Matriz Extracelular/metabolismo , Desarrollo Fetal , Fibrosis , Hematopoyesis , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/inmunología , Neoplasias Pancreáticas/patología , Microambiente Tumoral
3.
BMC Cancer ; 21(1): 541, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980181

RESUMEN

BACKGROUND: EpCAM (Epithelial cell adhesion molecule) is often dysregulated in epithelial cancers. Prior studies implicate EpCAM in the regulation of oncogenic signaling pathways and epithelial-to-mesenchymal transition. It was recently demonstrated that EpCAM contains a thyroglobulin type-1 (TY-1) domain. Multiple proteins with TY-1 domains are known to inhibit cathepsin-L (CTSL), a cysteine protease that promotes tumor cell invasion and metastasis. Analysis of human cancer sequencing studies reveals that somatic EpCAM mutations are present in up to 5.1% of tested tumors. METHODS: The Catalogue of Somatic Mutations in Cancer (COSMIC) database was queried to tabulate the position and amino acid changes of cancer associated EpCAM mutations. To determine how EpCAM mutations affect cancer biology we studied C66Y, a damaging TY-1 domain mutation identified in liver cancer, as well as 13 other cancer-associated EpCAM mutations. In vitro and in vivo models were used to determine the effect of wild type (WT) and mutant EpCAM on CTSL activity and invasion. Immunoprecipitation and localization studies tested EpCAM and CTSL protein binding and determined compartmental expression patterns of EpCAM mutants. RESULTS: We demonstrate that WT EpCAM, but not C66Y EpCAM, inhibits CTSL activity in vitro, and the TY-1 domain of EpCAM is responsible for this inhibition. WT EpCAM, but not C66Y EpCAM, inhibits tumor cell invasion in vitro and lung metastases in vivo. In an extended panel of human cancer cell lines, EpCAM expression is inversely correlated with CTSL activity. Previous studies have demonstrated that EpCAM germline mutations can prevent EpCAM from being expressed at the cell surface. We demonstrate that C66Y and multiple other EpCAM cancer-associated mutations prevent surface expression of EpCAM. Cancer-associated mutations that prevent EpCAM cell surface expression abrogate the ability of EpCAM to inhibit CTSL activity and tumor cell invasion. CONCLUSIONS: These studies reveal a novel role for EpCAM as a CTSL inhibitor, confirm the functional relevance of multiple cancer-associated EpCAM mutations, and suggest a therapeutic vulnerability in cancers harboring EpCAM mutations.


Asunto(s)
Catepsina L/antagonistas & inhibidores , Molécula de Adhesión Celular Epitelial/genética , Mutación , Neoplasias/genética , Animales , Catepsina L/fisiología , Molécula de Adhesión Celular Epitelial/fisiología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Invasividad Neoplásica
6.
Immunity ; 29(1): 21-32, 2008 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-18631454

RESUMEN

The mammalian immune system discriminates between modes of cell death; necrosis often results in inflammation and adaptive immunity, whereas apoptosis tends to be anti-inflammatory and promote immune tolerance. We have examined apoptosis for the features responsible for tolerance; specifically, we looked at the roles of caspases and mitochondria. Our results show that caspase activation targeted the mitochondria to produce reactive oxygen species (ROS), which were critical to tolerance induction by apoptotic cells. ROS oxidized the potential danger signal high-mobility group box-1 protein (HMGB1) released from dying cells and thereby neutralized its stimulatory activity. Apoptotic cells failed to induce tolerance and instead stimulated immune responses by scavenging or by mutating a mitochondrial caspase target protein when ROS activity was prohibited. Similarly, blocking sites of oxidation in HMGB1 prevented tolerance induction by apoptotic cells. These results suggest that caspase-orchestrated mitochondrial events determine the impact of apoptotic cells on the immune response.


Asunto(s)
Apoptosis/inmunología , Caspasas/inmunología , Proteína HMGB1/inmunología , Tolerancia Inmunológica/inmunología , Mitocondrias/metabolismo , Animales , Células Dendríticas/inmunología , Proteína HMGB1/metabolismo , Células HeLa , Humanos , Immunoblotting , Ratones , Ratones Endogámicos C57BL , Mitocondrias/inmunología , Oxidación-Reducción , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo
7.
Proc Natl Acad Sci U S A ; 109(31): 12716-21, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22802630

RESUMEN

Activation of naïve cluster of differentiation (CD)8(+) cytotoxic T lymphocytes (CTLs) is a tightly regulated process, and specific dendritic cell (DC) subsets are typically required to activate naive CTLs. Potential pathways for antigen presentation leading to CD8(+) T-cell priming include direct presentation, cross-presentation, and cross-dressing. To distinguish between these pathways, we designed single-chain trimer (SCT) peptide-MHC class I complexes that can be recognized as intact molecules but cannot deliver antigen to MHC through conventional antigen processing. We demonstrate that cross-dressing is a robust pathway of antigen presentation following vaccination, capable of efficiently activating both naïve and memory CD8(+) T cells and requires CD8α(+)/CD103(+) DCs. Significantly, immune responses induced exclusively by cross-dressing were as strong as those induced exclusively through cross-presentation. Thus, cross-dressing is an important pathway of antigen presentation, with important implications for the study of CD8(+) T-cell responses to viral infection, tumors, and vaccines.


Asunto(s)
Presentación de Antígeno , Antígenos CD/inmunología , Antígenos CD8/inmunología , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Cadenas alfa de Integrinas/inmunología , Vacunación , Animales , Antígenos CD/genética , Antígenos CD8/genética , Linfocitos T CD8-positivos/citología , Células Cultivadas , Células Dendríticas/citología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Cadenas alfa de Integrinas/genética , Ratones , Ratones Noqueados , Péptidos/genética , Péptidos/inmunología
8.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961519

RESUMEN

Breast cancer is a heterogeneous disease, and treatment is guided by biomarker profiles representing distinct molecular subtypes. Breast cancer arises from the breast ductal epithelium, and experimental data suggests breast cancer subtypes have different cells of origin within that lineage. The precise cells of origin for each subtype and the transcriptional networks that characterize these tumor-normal lineages are not established. In this work, we applied bulk, single-cell (sc), and single-nucleus (sn) multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 breast cancer patients to show characteristic links in gene expression and chromatin accessibility between breast cancer subtypes and their putative cells of origin. We applied the PAM50 subtyping algorithm in tandem with bulk RNA-seq and snRNA-seq to reliably subtype even low-purity tumor samples and confirm promoter accessibility using snATAC. Trajectory analysis of chromatin accessibility and differentially accessible motifs clearly connected progenitor populations with breast cancer subtypes supporting the cell of origin for basal-like and luminal A and B tumors. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal breast cancer and luminal mature cells, and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like ( PRKCA , SOX6 , RGS6 , KCNQ3 ) and luminal A/B ( FAM155A , LRP1B ) lineages, with expression in both precursor and cancer cells and further upregulation in tumors. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like breast cancer, suggesting altered means of immune dysfunction among breast cancer subtypes. We used spatial transcriptomics and multiplex imaging to provide spatial detail for key markers of benign and malignant cell types and immune cell colocation. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single cell level is a powerful tool for investigating breast cancer lineage development and highlight transcriptional networks that define basal and luminal breast cancer lineages.

9.
Cancer Res ; 83(24): 4161-4178, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38098449

RESUMEN

Current treatment approaches for renal cell carcinoma (RCC) face challenges in achieving durable tumor responses due to tumor heterogeneity and drug resistance. Combination therapies that leverage tumor molecular profiles could offer an avenue for enhancing treatment efficacy and addressing the limitations of current therapies. To identify effective strategies for treating RCC, we selected ten drugs guided by tumor biology to test in six RCC patient-derived xenograft (PDX) models. The multitargeted tyrosine kinase inhibitor (TKI) cabozantinib and mTORC1/2 inhibitor sapanisertib emerged as the most effective drugs, particularly when combined. The combination demonstrated favorable tolerability and inhibited tumor growth or induced tumor regression in all models, including two from patients who experienced treatment failure with FDA-approved TKI and immunotherapy combinations. In cabozantinib-treated samples, imaging analysis revealed a significant reduction in vascular density, and single-nucleus RNA sequencing (snRNA-seq) analysis indicated a decreased proportion of endothelial cells in the tumors. SnRNA-seq data further identified a tumor subpopulation enriched with cell-cycle activity that exhibited heightened sensitivity to the cabozantinib and sapanisertib combination. Conversely, activation of the epithelial-mesenchymal transition pathway, detected at the protein level, was associated with drug resistance in residual tumors following combination treatment. The combination effectively restrained ERK phosphorylation and reduced expression of ERK downstream transcription factors and their target genes implicated in cell-cycle control and apoptosis. This study highlights the potential of the cabozantinib plus sapanisertib combination as a promising treatment approach for patients with RCC, particularly those whose tumors progressed on immune checkpoint inhibitors and other TKIs. SIGNIFICANCE: The molecular-guided therapeutic strategy of combining cabozantinib and sapanisertib restrains ERK activity to effectively suppress growth of renal cell carcinomas, including those unresponsive to immune checkpoint inhibitors.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Sistema de Señalización de MAP Quinasas , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Diana Mecanicista del Complejo 1 de la Rapamicina , Células Endoteliales/patología , Inhibidores de Proteínas Quinasas/efectos adversos , Anilidas/farmacología , Anilidas/uso terapéutico , ARN Nuclear Pequeño/uso terapéutico
10.
J Immunol ; 185(7): 4063-71, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20805420

RESUMEN

An important mechanism by which pancreatic cancer avoids antitumor immunity is by recruiting regulatory T cells (Tregs) to the tumor microenvironment. Recent studies suggest that suppressor Tregs and effector Th17 cells share a common lineage and differentiate based on the presence of certain cytokines in the microenvironment. Because IL-6 in the presence of TGF-ß has been shown to inhibit Treg development and induce Th17 cells, we hypothesized that altering the tumor cytokine environment could induce Th17 and reverse tumor-associated immune suppression. Pan02 murine pancreatic tumor cells that secrete TGF-ß were transduced with the gene encoding IL-6. C57BL/6 mice were injected s.c. with wild-type (WT), empty vector (EV), or IL-6-transduced Pan02 cells (IL-6 Pan02) to investigate the impact of IL-6 secretion in the tumor microenvironment. Mice bearing IL-6 Pan02 tumors demonstrated significant delay in tumor growth and better overall median survival compared with mice bearing WT or EV Pan02 tumors. Immunohistochemical analysis demonstrated an increase in Th17 cells (CD4(+)IL-23R(+) cells and CD4(+)IL-17(+) cells) in tumors of the IL-6 Pan02 group compared with WT or EV Pan02 tumors. The upregulation of IL-17-secreting CD4(+) tumor-infiltrating lymphocytes was substantiated at the cellular level by flow cytometry and ELISPOT assay and mRNA level for retinoic acid-related orphan receptor γt and IL-23R by RT-PCR. Thus, the addition of IL-6 to the tumor microenvironment skews the balance toward Th17 cells in a murine model of pancreatic cancer. The delayed tumor growth and improved survival suggests that induction of Th17 in the tumor microenvironment produces an antitumor effect.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Interleucina-17/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias Pancreáticas/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Linfocitos T CD4-Positivos/metabolismo , Línea Celular Tumoral , Separación Celular , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Inmunohistoquímica , Interleucina-17/biosíntesis , Interleucina-6/inmunología , Interleucina-6/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Subgrupos de Linfocitos T/metabolismo , Transducción Genética
11.
Bioinform Adv ; 2(1): vbac028, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35603231

RESUMEN

Motivation: The use of single-cell methods is expanding at an ever-increasing rate. While there are established algorithms that address cell classification, they are limited in terms of cross platform compatibility, reliance on the availability of a reference dataset and classification interpretability. Here, we introduce Pollock, a suite of algorithms for cell type identification that is compatible with popular single-cell methods and analysis platforms, provides a set of pretrained human cancer reference models, and reports interpretability scores that identify the genes that drive cell type classifications. Results: Pollock performs comparably to existing classification methods, while offering easily deployable pretrained classification models across a wide variety of tissue and data types. Additionally, it demonstrates utility in immune pan-cancer analysis. Availability and implementation: Source code and documentation are available at https://github.com/ding-lab/pollock. Pretrained models and datasets are available for download at https://zenodo.org/record/5895221. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

12.
Cancer Discov ; 12(12): 2774-2799, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36165893

RESUMEN

The effects of radiotherapy (RT) on tumor immunity in pancreatic ductal adenocarcinoma (PDAC) are not well understood. To better understand if RT can prime antigen-specific T-cell responses, we analyzed human PDAC tissues and mouse models. In both settings, there was little evidence of RT-induced T-cell priming. Using in vitro systems, we found that tumor-stromal components, including fibroblasts and collagen, cooperate to blunt RT efficacy and impair RT-induced interferon signaling. Focal adhesion kinase (FAK) inhibition rescued RT efficacy in vitro and in vivo, leading to tumor regression, T-cell priming, and enhanced long-term survival in PDAC mouse models. Based on these data, we initiated a clinical trial of defactinib in combination with stereotactic body RT in patients with PDAC (NCT04331041). Analysis of PDAC tissues from these patients showed stromal reprogramming mirroring our findings in genetically engineered mouse models. Finally, the addition of checkpoint immunotherapy to RT and FAK inhibition in animal models led to complete tumor regression and long-term survival. SIGNIFICANCE: Checkpoint immunotherapeutics have not been effective in PDAC, even when combined with RT. One possible explanation is that RT fails to prime T-cell responses in PDAC. Here, we show that FAK inhibition allows RT to prime tumor immunity and unlock responsiveness to checkpoint immunotherapy. This article is highlighted in the In This Issue feature, p. 2711.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Humanos , Proteína-Tirosina Quinasas de Adhesión Focal , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/radioterapia , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/radioterapia , Inmunoterapia , Microambiente Tumoral , Línea Celular Tumoral , Neoplasias Pancreáticas
13.
NPJ Breast Cancer ; 8(1): 134, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36585404

RESUMEN

Atezolizumab with chemotherapy has shown improved progression-free and overall survival in patients with metastatic PD-L1 positive triple negative breast cancer (TNBC). Atezolizumab with anthracycline- and taxane-based neoadjuvant chemotherapy has also shown increased pathological complete response (pCR) rates in early TNBC. This trial evaluated neoadjuvant carboplatin and paclitaxel with or without atezolizumab in patients with clinical stages II-III TNBC. The co-primary objectives were to evaluate if chemotherapy and atezolizumab increase pCR rate and tumor infiltrating lymphocyte (TIL) percentage compared to chemotherapy alone in the mITT population. Sixty-seven patients (ages 25-78 years; median, 52 years) were randomly assigned - 22 patients to Arm A, and 45 to Arm B. Median follow up was 6.6 months. In the modified intent to treat population (all patients evaluable for the primary endpoints who received at least one dose of combination therapy), the pCR rate was 18.8% (95% CI 4.0-45.6%) in Arm A, and 55.6% (95% CI 40.0-70.4%) in Arm B (estimated treatment difference: 36.8%, 95% CI 8.5-56.6%; p = 0.018). Grade 3 or higher treatment-related adverse events occurred in 62.5% of patients in Arm A, and 57.8% of patients in Arm B. One patient in Arm B died from recurrent disease during the follow-up period. TIL percentage increased slightly from baseline to cycle 1 in both Arm A (mean ± SD: 0.6% ± 21.0%) and Arm B (5.7% ± 15.8%) (p = 0.36). Patients with pCR had higher median TIL percentages (24.8%) than those with non-pCR (14.2%) (p = 0.02). Although subgroup analyses were limited by the small sample size, PD-L1-positive patients treated with chemotherapy and atezolizumab had a pCR rate of 75% (12/16). The addition of atezolizumab to neoadjuvant carboplatin and paclitaxel resulted in a statistically significant and clinically relevant increased pCR rate in patients with clinical stages II and III TNBC. (Funded by National Cancer Institute).

14.
Nat Genet ; 54(9): 1390-1405, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35995947

RESUMEN

Pancreatic ductal adenocarcinoma is a lethal disease with limited treatment options and poor survival. We studied 83 spatial samples from 31 patients (11 treatment-naïve and 20 treated) using single-cell/nucleus RNA sequencing, bulk-proteogenomics, spatial transcriptomics and cellular imaging. Subpopulations of tumor cells exhibited signatures of proliferation, KRAS signaling, cell stress and epithelial-to-mesenchymal transition. Mapping mutations and copy number events distinguished tumor populations from normal and transitional cells, including acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia. Pathology-assisted deconvolution of spatial transcriptomic data identified tumor and transitional subpopulations with distinct histological features. We showed coordinated expression of TIGIT in exhausted and regulatory T cells and Nectin in tumor cells. Chemo-resistant samples contain a threefold enrichment of inflammatory cancer-associated fibroblasts that upregulate metallothioneins. Our study reveals a deeper understanding of the intricate substructure of pancreatic ductal adenocarcinoma tumors that could help improve therapy for patients with this disease.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Transformación Celular Neoplásica/genética , Humanos , Páncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/genética , Neoplasias Pancreáticas
15.
Genome Med ; 13(1): 56, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33879241

RESUMEN

BACKGROUND: Preclinical studies and early clinical trials have shown that targeting cancer neoantigens is a promising approach towards the development of personalized cancer immunotherapies. DNA vaccines can be rapidly and efficiently manufactured and can integrate multiple neoantigens simultaneously. We therefore sought to optimize the design of polyepitope DNA vaccines and test optimized polyepitope neoantigen DNA vaccines in preclinical models and in clinical translation. METHODS: We developed and optimized a DNA vaccine platform to target multiple neoantigens. The polyepitope DNA vaccine platform was first optimized using model antigens in vitro and in vivo. We then identified neoantigens in preclinical breast cancer models through genome sequencing and in silico neoantigen prediction pipelines. Optimized polyepitope neoantigen DNA vaccines specific for the murine breast tumor E0771 and 4T1 were designed and their immunogenicity was tested in vivo. We also tested an optimized polyepitope neoantigen DNA vaccine in a patient with metastatic pancreatic neuroendocrine tumor. RESULTS: Our data support an optimized polyepitope neoantigen DNA vaccine design encoding long (≥20-mer) epitopes with a mutant form of ubiquitin (Ubmut) fused to the N-terminus for antigen processing and presentation. Optimized polyepitope neoantigen DNA vaccines were immunogenic and generated robust neoantigen-specific immune responses in mice. The magnitude of immune responses generated by optimized polyepitope neoantigen DNA vaccines was similar to that of synthetic long peptide vaccines specific for the same neoantigens. When combined with immune checkpoint blockade therapy, optimized polyepitope neoantigen DNA vaccines were capable of inducing antitumor immunity in preclinical models. Immune monitoring data suggest that optimized polyepitope neoantigen DNA vaccines are capable of inducing neoantigen-specific T cell responses in a patient with metastatic pancreatic neuroendocrine tumor. CONCLUSIONS: We have developed and optimized a novel polyepitope neoantigen DNA vaccine platform that can target multiple neoantigens and induce antitumor immune responses in preclinical models and neoantigen-specific responses in clinical translation.


Asunto(s)
Antígenos de Neoplasias/inmunología , Epítopos/inmunología , Inmunidad , Investigación Biomédica Traslacional , Vacunas de ADN/inmunología , Adulto , Animales , Presentación de Antígeno/inmunología , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Células HeLa , Humanos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Masculino , Neoplasias Mamarias Animales/patología , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Tumores Neuroendocrinos/inmunología , Tumores Neuroendocrinos/patología , Péptidos/inmunología , Linfocitos T/inmunología
16.
Sci Transl Med ; 11(499)2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31270275

RESUMEN

Although checkpoint immunotherapies have revolutionized the treatment of cancer, not all tumor types have seen substantial benefit. Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy in which very limited responses to immunotherapy have been observed. Extensive immunosuppressive myeloid cell infiltration in PDAC tissues has been postulated as a major mechanism of resistance to immunotherapy. Strategies concomitantly targeting monocyte or granulocyte trafficking or macrophage survival, in combination with checkpoint immunotherapies, have shown promise in preclinical studies, and these studies have transitioned into ongoing clinical trials for the treatment of pancreatic and other cancer types. However, compensatory actions by untargeted monocytes, granulocytes, and/or tissue resident macrophages may limit the therapeutic efficacy of such strategies. CD11b/CD18 is an integrin molecule that is highly expressed on the cell surface of these myeloid cell subsets and plays an important role in their trafficking and cellular functions in inflamed tissues. Here, we demonstrate that the partial activation of CD11b by a small-molecule agonist (ADH-503) leads to the repolarization of tumor-associated macrophages, reduction in the number of tumor-infiltrating immunosuppressive myeloid cells, and enhanced dendritic cell responses. These actions, in turn, improve antitumor T cell immunity and render checkpoint inhibitors effective in previously unresponsive PDAC models. These data demonstrate that molecular agonism of CD11b reprograms immunosuppressive myeloid cell responses and potentially bypasses the limitations of current clinical strategies to overcome resistance to immunotherapy.


Asunto(s)
Antígeno CD11b/agonistas , Inmunidad Innata , Inmunoterapia , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Animales , Antígenos CD/metabolismo , Proliferación Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Granulocitos/metabolismo , Humanos , Cadenas alfa de Integrinas/metabolismo , Activación de Macrófagos , Ratones Endogámicos C57BL , Células Mieloides/inmunología , Metástasis de la Neoplasia , Análisis de Supervivencia , Linfocitos T/inmunología , Resultado del Tratamiento
17.
Cancer Immunol Res ; 5(7): 516-523, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28619968

RESUMEN

Next-generation sequencing technologies have provided insights into the biology and mutational landscape of cancer. Here, we evaluate the relevance of cancer neoantigens in human breast cancers. Using patient-derived xenografts from three patients with advanced breast cancer (xenografts were designated as WHIM30, WHIM35, and WHIM37), we sequenced exomes of tumor and patient-matched normal cells. We identified 2,091 (WHIM30), 354 (WHIM35), and 235 (WHIM37) nonsynonymous somatic mutations. A computational analysis identified and prioritized HLA class I-restricted candidate neoantigens expressed in the dominant tumor clone. Each candidate neoantigen was evaluated using peptide-binding assays, T-cell cultures that measure the ability of CD8+ T cells to recognize candidate neoantigens, and preclinical models in which we measured antitumor immunity. Our results demonstrate that breast cancer neoantigens can be recognized by the immune system, and that human CD8+ T cells enriched for prioritized breast cancer neoantigens were able to protect mice from tumor challenge with autologous patient-derived xenografts. We conclude that next-generation sequencing and epitope-prediction strategies can identify and prioritize candidate neoantigens for immune targeting in breast cancer. Cancer Immunol Res; 5(7); 516-23. ©2017 AACR.


Asunto(s)
Antígenos de Neoplasias/inmunología , Neoplasias de la Mama/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos/inmunología , Animales , Antígenos de Neoplasias/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Mapeo Epitopo , Epítopos/genética , Exoma/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Mutación/genética , Mutación/inmunología , Linfocitos T Citotóxicos/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Nat Med ; 22(8): 851-60, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27376576

RESUMEN

Single-agent immunotherapy has achieved limited clinical benefit to date in patients with pancreatic ductal adenocarcinoma (PDAC). This may be a result of the presence of a uniquely immunosuppressive tumor microenvironment (TME). Critical obstacles to immunotherapy in PDAC tumors include a high number of tumor-associated immunosuppressive cells and a uniquely desmoplastic stroma that functions as a barrier to T cell infiltration. We identified hyperactivated focal adhesion kinase (FAK) activity in neoplastic PDAC cells as an important regulator of the fibrotic and immunosuppressive TME. We found that FAK activity was elevated in human PDAC tissues and correlated with high levels of fibrosis and poor CD8(+) cytotoxic T cell infiltration. Single-agent FAK inhibition using the selective FAK inhibitor VS-4718 substantially limited tumor progression, resulting in a doubling of survival in the p48-Cre;LSL-Kras(G12D);Trp53(flox/+) (KPC) mouse model of human PDAC. This delay in tumor progression was associated with markedly reduced tumor fibrosis and decreased numbers of tumor-infiltrating immunosuppressive cells. We also found that FAK inhibition rendered the previously unresponsive KPC mouse model responsive to T cell immunotherapy and PD-1 antagonists. These data suggest that FAK inhibition increases immune surveillance by overcoming the fibrotic and immunosuppressive PDAC TME and renders tumors responsive to immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Carcinoma Ductal Pancreático/inmunología , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Inmunoterapia Adoptiva/métodos , Neoplasias Pancreáticas/inmunología , Escape del Tumor/inmunología , Aminopiridinas/farmacología , Animales , Antimetabolitos Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Proliferación Celular/efectos de los fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fibrosis , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Immunoblotting , Inmunohistoquímica , Inmunoterapia , Ratones , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Microambiente Tumoral , Gemcitabina
19.
Cancers (Basel) ; 3(4): 4191-211, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24213133

RESUMEN

New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines.

20.
Vaccine ; 28(8): 1911-8, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20188246

RESUMEN

It is commonly believed that delivery of antigen into the class I antigen presentation pathway is a limiting factor in the clinical translation of DNA vaccines. This is of particular concern in the context of cancer vaccine development as many immunodominant peptides derived from self tumor antigens are not processed and presented efficiently. To address this limitation, we have engineered completely assembled peptide/MHC class I complexes whereby all three components (class I heavy chain, beta(2)m, and peptide) are attached by flexible linkers and expressed as a single polypeptide (single chain trimers or SCT). In this study, we tested the efficacy of progressive generations of SCT DNA vaccines engineered to (1) enhance peptide binding, (2) enhance interaction with the CD8 coreceptor, and/or (3) activate CD4(+) helper T cells. Disulfide trap SCT (dtSCT) have been engineered to improve peptide binding, with mutations designed to create a disulfide bond between the class I heavy chain and the peptide linker. dtSCT DNA vaccines dramatically enhance the immune response to model low affinity antigens as measured by ELISPOT analysis and tumor challenge. SCT engineered to enhance interaction with the CD8 coreceptor have a higher affinity for the TCR/CD8 complex, and are associated with more robust CD8(+) T cell responses following vaccination. Finally, SCT constructs that coexpress a universal helper epitope PADRE, dramatically enhance CD8(+) T cell responses. Taken together, our data demonstrate that dtSCT DNA vaccines coexpressing a universal CD4 epitope are highly effective in generating immune responses to poorly processed and presented cancer antigens.


Asunto(s)
Epítopos de Linfocito T/inmunología , Genes MHC Clase I , Activación de Linfocitos , Vacunas de ADN/inmunología , Animales , Presentación de Antígeno/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Antígeno HLA-A2/inmunología , Humanos , Mamoglobina A , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Proteínas de Neoplasias/inmunología , Ovalbúmina/inmunología , Unión Proteica , Ingeniería de Proteínas , Uteroglobina/inmunología , Vacunas de ADN/biosíntesis , Vacunas de ADN/genética , Microglobulina beta-2/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA