Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(34): e2200759119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969777

RESUMEN

Adaptive plasticity requires an integrated suite of functional responses to environmental variation, which can include social communication across life stages. Desert locusts (Schistocerca gregaria) exhibit an extreme example of phenotypic plasticity called phase polyphenism, in which a suite of behavioral and morphological traits differ according to local population density. Male and female juveniles developing at low population densities exhibit green- or sand-colored background-matching camouflage, while at high densities they show contrasting yellow and black aposematic patterning that deters predators. The predominant background colors of these phenotypes (green/sand/yellow) all depend on expression of the carotenoid-binding "Yellow Protein" (YP). Gregarious (high-density) adults of both sexes are initially pinkish, before a YP-mediated yellowing reoccurs upon sexual maturation. Yellow color is especially prominent in gregarious males, but the reason for this difference has been unknown since phase polyphenism was first described in 1921. Here, we use RNA interference to show that gregarious male yellowing acts as an intrasexual warning signal, which forms a multimodal signal with the antiaphrodisiac pheromone phenylacetonitrile (PAN) to prevent mistaken sexual harassment from other males during scramble mating in a swarm. Socially mediated reexpression of YP thus adaptively repurposes a juvenile signal that deters predators into an adult signal that deters undesirable mates. These findings reveal a previously underappreciated sexual dimension to locust phase polyphenism, and promote locusts as a model for investigating the relative contributions of natural versus sexual selection in the evolution of phenotypic plasticity.


Asunto(s)
Mimetismo Biológico , Saltamontes , Animales , Femenino , Saltamontes/genética , Masculino , Feromonas/metabolismo , Pigmentación , Densidad de Población , Caracteres Sexuales
2.
J Exp Bot ; 74(20): 6321-6330, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37317945

RESUMEN

Fruit quality traits are determined to a large extent by their metabolome. The metabolite content of climacteric fruit changes drastically during ripening and post-harvest storage, and has been investigated extensively. However, the spatial distribution of metabolites and how it changes in time has received much less attention as fruit are usually considered as homogenous plant organs. Yet, spatio-temporal changes of starch, which is hydrolyzed during ripening, has been used for a long time as a ripening index. As vascular transport of water, and hence convective transport of metabolites, slows down in mature fruit and even stalls after detachment, spatio-temporal changes in their concentration are probably affected by diffusive transport of gaseous molecules that act as substrate (O2), inhibitor (CO2), or regulator (ethylene and NO) of the metabolic pathways that are active during climacteric ripening. In this review, we discuss such spatio-temporal changes of the metabolome and how they are affected by transport of metabolic gases and gaseous hormones. As there are currently no techniques available to measure the metabolite distribution repeatedly by non-destructive means, we introduce reaction-diffusion models as an in silico tool to compute it. We show how the different components of such a model can be integrated and used to better understand the role of spatio-temporal changes of the metabolome in ripening and post-harvest storage of climacteric fruit that is detached from the plant, and discuss future research needs.


Asunto(s)
Climaterio , Frutas , Frutas/metabolismo , Etilenos/metabolismo , Metaboloma , Gases/metabolismo
3.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37761982

RESUMEN

DNA-based enzymes, or DNAzymes, are single-stranded DNA sequences with the ability to catalyze various chemical reactions, including the cleavage of the bond between two RNA nucleotides. Lately, an increasing interest has been observed in these RNA-cleaving DNAzymes in the biosensing and therapeutic fields for signal generation and the modulation of gene expression, respectively. Additionally, multiple efforts have been made to study the effects of the reaction environment and the sequence of the catalytic core on the conversion of the substrate into product. However, most of these studies have only reported alterations of the general reaction course, but only a few have focused on how each individual reaction step is affected. In this work, we present for the first time a mathematical model that describes and predicts the reaction of the 10-23 RNA-cleaving DNAzyme. Furthermore, the model has been employed to study the effect of temperature, magnesium cations and shorter substrate-binding arms of the DNAzyme on the different kinetic rate constants, broadening the range of conditions in which the model can be exploited. In conclusion, this work depicts the prospects of such mathematical models to study and anticipate the course of a reaction given a particular environment.


Asunto(s)
ADN Catalítico , Catálisis , Dominio Catalítico , ADN de Cadena Simple/genética , ARN/genética
4.
J Sci Food Agric ; 100(14): 5207-5221, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32520412

RESUMEN

BACKGROUND: The ripening of mango involves changes in texture, flavor, and color, affecting the quality of the fruit. Previous studies have investigated the physiology on the evolution of quality during ripening but only a few have looked at microstructural changes during ripening. None of them has provided an insight into the relationhip between 3-D microstructure and the evolution of quality during ripening. As the 3-D microstructure of fruit tissue determines its mechanical and gas-transport properties, it is likely to affect fruit texture, respiratory metabolism, and other ripening processes. RESULTS: The present study focuses on the role of 3-D microstructural changes in relation to quality changes during mango ripening. Microstructural imaging using X-ray micro-computed tomography suggested the incidence of cell leakage, which was confirmed by the measurement of electrolyte leakage from the fruit peel. Due to cell leakage, porosity, pore connectivity, and pore local diameter were decreased whereas the tissue local diameter and pore specific area were increased. The decline in respiration and respiratory quotient during ripening followed the microstructural changes observed. Meanwhile, changes in aroma were observed such as a decrease in monoterpenes and an increase in esters and other fermentative metabolites. CONCLUSION: Overall, the results provide a complete, integrated picture of microstructural changes during ripening accompanying the evolution of fruit quality, suggesting functional relationships between the two. © 2020 Society of Chemical Industry.


Asunto(s)
Frutas/química , Imagenología Tridimensional/métodos , Mangifera/crecimiento & desarrollo , Microtomografía por Rayos X/métodos , Color , Frutas/crecimiento & desarrollo , Mangifera/química , Odorantes/análisis
5.
J Sci Food Agric ; 99(13): 5662-5670, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31150567

RESUMEN

BACKGROUND: The fruit of two apple cultivars - 'Braeburn', which is susceptible to inoculation with Botrytis cinerea, and the less susceptible cv. 'Golden Delicious' - were investigated with respect to their response to inoculation with B. cinerea. Successful infection by B. cinerea leads to an oxidative burst and perturbation of plant redox homeostasis. To investigate the interaction between apple fruit and B. cinerea, antioxidant metabolism in fruit samples from sun-exposed and shaded sides of different tissue types was measured over time. RESULTS: The sun-exposed tissue of 'Braeburn' had higher initial levels of total vitamin C in the peel and phenolic compounds in the flesh than 'Golden Delicious', despite its greater susceptibility to gray mold. A substantial antioxidant response was recorded in diseased 'Braeburn' fruit 14 days after inoculation, which involved an elevated superoxide dismutase activity and ascorbate peroxidase activity, a progressive oxidation of total vitamin C, and a decrease in peroxidase activity and phenolic content. Disease development was slower on the sun-exposed sides than on the shaded sides. CONCLUSION: The two cultivars appeared to utilize different strategies to defend themselves against B. cinerea. 'Golden Delicious' almost entirely escaped infection. Preharvest exposure of apple fruit to high light / temperature stress appears to prepare them to better resist subsequent postharvest attack and disease. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Antioxidantes/metabolismo , Botrytis/fisiología , Frutas/microbiología , Malus/microbiología , Enfermedades de las Plantas/microbiología , Ácido Ascórbico/análisis , Ácido Ascórbico/metabolismo , Color , Frutas/química , Frutas/metabolismo , Malus/química , Malus/metabolismo , Fenoles/química , Fenoles/metabolismo , Estallido Respiratorio
6.
J Exp Bot ; 69(8): 2049-2060, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29394374

RESUMEN

The respiration rate of plant tissues decreases when the amount of available O2 is reduced. There is, however, a debate on whether the respiration rate is controlled either by diffusion limitation of oxygen or through regulatory processes at the level of the transcriptome. We used experimental and modelling approaches to demonstrate that both diffusion limitation and metabolic regulation affect the response of respiration of bulky plant organs such as fruit to reduced O2 levels in the surrounding atmosphere. Diffusion limitation greatly affects fruit respiration at high temperature, but at low temperature respiration is reduced through a regulatory process, presumably a response to a signal generated by a plant oxygen sensor. The response of respiration to O2 is time dependent and is highly sensitive, particularly at low O2 levels in the surrounding atmosphere. Down-regulation of the respiration at low temperatures may save internal O2 and relieve hypoxic conditions in the fruit.


Asunto(s)
Frutas/metabolismo , Pyrus/metabolismo , Dióxido de Carbono/metabolismo , Respiración de la Célula , Regulación hacia Abajo , Modelos Biológicos , Oxígeno/metabolismo , Temperatura
7.
Proteomics ; 17(21)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28922568

RESUMEN

Quantitative proteomics methods have emerged as powerful tools for measuring protein expression changes at the proteome level. Using MS-based approaches, it is now possible to routinely quantify thousands of proteins. However, prefractionation of the samples at the protein or peptide level is usually necessary to go deep into the proteome, increasing both MS analysis time and technical variability. Recently, a new MS acquisition method named SWATH is introduced with the potential to provide good coverage of the proteome as well as a good measurement precision without prior sample fractionation. In contrast to shotgun-based MS however, a library containing experimental acquired spectra is necessary for the bioinformatics analysis of SWATH data. In this study, spectral libraries for two widely used models are built to study crop ripening or animal embryogenesis, Solanum lycopersicum (tomato) and Drosophila melanogaster, respectively. The spectral libraries comprise fragments for 5197 and 6040 proteins for S. lycopersicum and D. melanogaster, respectively, and allow reproducible quantification for thousands of peptides per MS analysis. The spectral libraries and all MS data are available in the MassIVE repository with the dataset identifiers MSV000081074 and MSV000081075 and the PRIDE repository with the dataset identifiers PXD006493 and PXD006495.


Asunto(s)
Drosophila melanogaster/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Solanum lycopersicum/metabolismo , Espectrometría de Masas en Tándem/métodos , Animales , Drosophila melanogaster/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , Biblioteca de Péptidos , Estándares de Referencia
8.
Proteomics ; 17(1-2)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27957804

RESUMEN

Since the genome of Solanum lycopersicum L. was published in 2012, some studies have explored its proteome although with a limited depth. In this work, we present an extended characterization of the proteome of the tomato pericarp at its ripe red stage. Fractionation of tryptic peptides generated from pericarp proteins by off-line high-pH reverse-phase phase chromatography in combination with LC-MS/MS analysis on a Fisher Scientific Q Exactive and a Sciex Triple-TOF 6600 resulted in the identification of 8588 proteins with a 1% FDR both at the peptide and protein levels. Proteins were mapped through GO and KEGG databases and a large number of the identified proteins were associated with cytoplasmic organelles and metabolic pathways categories. These results constitute one of the most extensive proteome datasets of tomato so far and provide an experimental confirmation of the existence of a high number of theoretically predicted proteins. All MS data are available in the ProteomeXchange repository with the dataset identifiers PXD004947 and PXD004932.


Asunto(s)
Frutas/metabolismo , Proteoma/metabolismo , Solanum lycopersicum/metabolismo , Cromatografía Liquida , Proteínas de Plantas/metabolismo , Proteómica , Espectrometría de Masas en Tándem
9.
BMC Plant Biol ; 17(1): 77, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28431510

RESUMEN

BACKGROUND: Superficial scald is a physiological disorder of apple fruit characterized by sunken, necrotic lesions appearing after prolonged cold storage, although initial injury occurs much earlier in the storage period. To determine the degree to which the transition to cell death is an active process and specific metabolism involved, untargeted metabolic and transcriptomic profiling was used to follow metabolism of peel tissue over 180 d of cold storage. RESULTS: The metabolome and transcriptome of peel destined to develop scald began to diverge from peel where scald was controlled using antioxidant (diphenylamine; DPA) or rendered insensitive to ethylene using 1-methylcyclopropene (1-MCP) beginning between 30 and 60 days of storage. Overall metabolic and transcriptomic shifts, representing multiple pathways and processes, occurred alongside α-farnesene oxidation and, later, methanol production alongside symptom development. CONCLUSIONS: Results indicate this form of peel necrosis is a product of an active metabolic transition involving multiple pathways triggered by chilling temperatures at cold storage inception rather than physical injury. Among multiple other pathways, enhanced methanol and methyl ester levels alongside upregulated pectin methylesterases are unique to peel that is developing scald symptoms similar to injury resulting from mechanical stress and herbivory in other plants.


Asunto(s)
Respuesta al Choque por Frío , Frutas/metabolismo , Malus/metabolismo , Enfermedades de las Plantas , Hidrolasas de Éster Carboxílico/genética , Frío , Ésteres/metabolismo , Almacenamiento de Alimentos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Malus/enzimología , Malus/genética , Metaboloma , Metanol/metabolismo , Enfermedades de las Plantas/genética , Regulación hacia Arriba
10.
J Sci Food Agric ; 97(11): 3802-3813, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28139841

RESUMEN

BACKGROUND: 1-Methylcyclopropene (1-MCP) inhibits ripening in climacteric fruit by blocking ethylene receptors, preventing ethylene from binding and eliciting its action. The objective of the current study was to use mathematical models to describe 1-MCP inhibition of apple fruit ripening, and to provide a tool for predicting ethylene production, and two important quality indicators of apple fruit, firmness and background colour. RESULTS: A model consisting of coupled differential equations describing 1-MCP inhibition of apple ripening was developed. Data on ethylene production, expression of ethylene receptors, firmness, and background colour during ripening of untreated and 1-MCP treated apples were used to calibrate the model. An overall adjusted R2 of 95% was obtained. The impact of time from harvest to treatment, and harvest maturity on 1-MCP efficacy was modelled. Different hypotheses on the partial response of 'Jonagold' apple to 1-MCP treatment were tested using the model. The model was validated using an independent dataset. CONCLUSIONS: Low 1-MCP blocking efficacy was shown to be the most likely cause of partial response for delayed 1-MCP treatment, and 1-MCP treatment of late-picked apples. Time from harvest to treatment was a more important factor than maturity for 1-MCP efficacy in 'Jonagold' apples. © 2017 Society of Chemical Industry.


Asunto(s)
Ciclopropanos/farmacología , Etilenos/metabolismo , Frutas/crecimiento & desarrollo , Malus/efectos de los fármacos , Frutas/química , Frutas/efectos de los fármacos , Frutas/metabolismo , Malus/química , Malus/crecimiento & desarrollo , Malus/metabolismo , Modelos Teóricos
11.
BMC Genomics ; 17(1): 798, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27733113

RESUMEN

BACKGROUND: 'Honeycrisp' is an apple cultivar that is susceptible to soft scald, a chilling injury expressed as necrotic patches on the peel. Improved understanding of metabolism associated with the disorder would improve our understanding of soft scald and contribute to developing more effective management strategies for apple storage. It was expected that specific gene expression and specific metabolite levels in the peel would be linked with soft scald risk at harvest and/or specific time points during cold storage. RESULTS: Fruit from nine 'Honeycrisp' apple orchards that would eventually develop different incidences of soft scald between 4 and 8 weeks of cold air storage were used to contrast and determine differential transcriptomic and metabolomic changes during storage. Untargeted metabolic profiling revealed changes in a number of distinct pathways preceding and concurrent with soft scald symptom development, including elevated γ-aminobutryic acid (GABA), 1-hexanol, acylated steryl glycosides, and free p-coumaryl acyl esters. At harvest, levels of sesquiterpenoid and triterpenoid acyl esters were relatively higher in peel of fruit that did not later develop the disorder. RNA-seq driven gene expression profiling highlighted possible involvement of genes and associated metabolic processes with soft scald development. These included elevated expression of genes involved in lipid peroxidation and phenolic metabolism in fruit with soft scald, and isoprenoid/brassinosteroid metabolism in fruit that did not develop soft scald. Expression of other stress-related genes in fruit that developed soft scald included chlorophyll catabolism, cell wall loosening, and lipid transport while superoxide dismutases were up-regulated in fruit that did not develop the disorder. CONCLUSIONS: This study delineates the sequential transcriptomic and metabolomic changes preceding soft scald symptom development. Changes were differential depending on susceptibility of fruit to the disorder and could be attributed to key stress related and mediating pathways.


Asunto(s)
Metabolismo Energético , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Análisis por Conglomerados , Perfilación de la Expresión Génica , Metabolómica , Transcriptoma
12.
J Sci Food Agric ; 96(15): 4984-4993, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26865255

RESUMEN

BACKGROUND: Braeburn browning disorder is a storage disease characterised by flesh browning and lens-shaped cavities. The incidence of this postharvest disorder is known to be affected by pre-harvest application of fertilisers and triazole-based fungicides. Recent work has shown that calcium and potassium reduced the incidence of Braeburn browning disorder, while triazoles had the opposite effect. This study addresses the hypothesis of an early proteomic imprint in the apple fruit at harvest induced by the pre-harvest factors applied. If so, this could be used for an early screening of apple fruit at harvest for their postharvest susceptibility to flesh browning. RESULTS: Calcium and triazole had significant effects, while potassium did not. One hundred and thirty protein families were identified, of which 29 were significantly altered after calcium and 63 after triazole treatment. Up-regulation of important antioxidant enzymes was correlated with calcium fertilisation, while triazole induced alterations in the levels of respiration and ethylene biosynthesis related proteins. CONCLUSION: Pre-harvest fertiliser and fungicide application had considerable effects on the apple proteome at harvest. These changes, together with the applied storage conditions will determine whether or not BBD develops. © 2016 Society of Chemical Industry.


Asunto(s)
Calcio/administración & dosificación , Frutas/efectos de los fármacos , Malus/química , Potasio/administración & dosificación , Proteoma/efectos de los fármacos , Triazoles/administración & dosificación , Antioxidantes , Etilenos/biosíntesis , Fertilizantes , Conservación de Alimentos/métodos , Almacenamiento de Alimentos/métodos , Frutas/química , Fungicidas Industriales/administración & dosificación , Reacción de Maillard/efectos de los fármacos , Proteínas de Plantas/análisis
13.
Physiol Plant ; 155(3): 232-47, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26031836

RESUMEN

Apples are predominantly stored in controlled atmosphere (CA) storage to delay ripening and prolong their storage life. Profiling the dynamics of metabolic changes during ripening and CA storage is vital for understanding the governing molecular mechanism. In this study, the dynamics of the primary metabolism of 'Jonagold' apples during ripening in regular air (RA) storage and initiation of CA storage was profiled. 1-Methylcyclopropene (1-MCP) was exploited to block ethylene receptors and to get insight into ethylene mediated metabolic changes during ripening of the fruit and in response to hypoxic stress. Metabolic changes were quantified in glycolysis, the tricarboxylic acid (TCA) cycle, the Yang cycle and synthesis of the main amino acids branching from these metabolic pathways. Partial least square discriminant analysis of the metabolic profiles of 1-MCP treated and control apples revealed a metabolic divergence in ethylene, organic acid, sugar and amino acid metabolism. During RA storage at 18°C, most amino acids were higher in 1-MCP treated apples, whereas 1-aminocyclopropane-1-carboxylic acid (ACC) was higher in the control apples. The initial response of the fruit to CA initiation was accompanied by an increase of alanine, succinate and glutamate, but a decline in aspartate. Furthermore, alanine and succinate accumulated to higher levels in control apples than 1-MCP treated apples. The observed metabolic changes in these interlinked metabolites may indicate a coordinated adaptive strategy to maximize energy production.


Asunto(s)
Adaptación Fisiológica/fisiología , Etilenos/metabolismo , Malus/metabolismo , Aminoácidos/metabolismo , Metabolismo de los Hidratos de Carbono , Ciclopropanos/farmacología , Ambiente Controlado , Malus/efectos de los fármacos , Malus/fisiología , Metabolómica/métodos , Oxígeno/metabolismo , Estrés Fisiológico/fisiología
14.
Physiol Plant ; 153(2): 204-20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24944043

RESUMEN

'Soggy breakdown' (SB) is an internal flesh disorder of 'Honeycrisp' apple (Malus × domestica Borkh.) fruit that occurs during low temperature storage. The disorder is a chilling injury (CI) in which visible symptoms typically appear after several weeks of storage, but information about the underlying metabolism associated with its induction and development is lacking. The metabolic profile of flesh tissue from wholly healthy fruit and brown and healthy tissues from fruit with SB was characterized using gas chromatography-mass spectrometry (GC-MS) and liquid chromatograph-mass spectrometry (LC-MS). Partial least squares discriminant analysis (PLS-DA) and correlation networks revealed correlation among ester volatile compounds by composition and differences in phytosterol, phenolic and putative triacylglycerides (TAGs) metabolism among the tissues. anova-simultaneous component analysis (ASCA) was used to test the significance of metabolic changes linked with tissue health status. ASCA-significant components included antioxidant compounds, TAGs, and phytosterol conjugates. Relative to entirely healthy tissues, elevated metabolite levels in symptomatic tissue included γ-amino butyric acid, glycerol, sitosteryl (6'-O-palmitoyl) ß-d-glucoside and sitosteryl (6'-O-stearate) ß-d-glucoside, and TAGs containing combinations of 16:0, 18:3, 18:2 and 18:1 fatty acids. Reduced metabolite levels in SB tissue included 5-caffeoyl quinate, ß-carotene, catechin, epicatechin, α-tocopherol, violaxanthin and sitosteryl ß-d glucoside. Pathway analysis indicated aspects of primary metabolism differed according to tissue condition, although differences in metabolites involved were more subtle than those of some secondary metabolites. The results implicate oxidative stress and membrane disruption processes in SB development and constitute a diagnostic metabolic profile for the disorder.


Asunto(s)
Antioxidantes/análisis , Frío , Frutas/metabolismo , Metabolismo de los Lípidos , Malus/citología , Malus/metabolismo , Fenoles/análisis , Análisis de Varianza , Análisis Discriminante , Frutas/citología , Cromatografía de Gases y Espectrometría de Masas , Análisis de los Mínimos Cuadrados , Redes y Vías Metabólicas , Metaboloma , Metabolómica , Transducción de Señal , Compuestos Orgánicos Volátiles/análisis
15.
BMC Plant Biol ; 14: 328, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25430515

RESUMEN

BACKGROUND: Postharvest ripening of apple (Malus x domestica) can be slowed down by low temperatures, and a combination of low O2 and high CO2 levels. While this maintains the quality of most fruit, occasionally storage disorders such as flesh browning can occur. This study aimed to explore changes in the apple transcriptome associated with a flesh browning disorder related to controlled atmosphere storage using RNA-sequencing techniques. Samples from a browning-susceptible cultivar ('Braeburn') were stored for four months under controlled atmosphere. Based on a visual browning index, the inner and outer cortex of the stored apples was classified as healthy or affected tissue. RESULTS: Over 600 million short single-end reads were mapped onto the Malus consensus coding sequence set, and differences in the expression profiles between healthy and affected tissues were assessed to identify candidate genes associated with internal browning in a tissue-specific manner. Genes involved in lipid metabolism, secondary metabolism, and cell wall modifications were highly modified in the affected inner cortex, while energy-related and stress-related genes were mostly altered in the outer cortex. The expression levels of several of them were confirmed using qRT-PCR. Additionally, a set of novel browning-specific differentially expressed genes, including pyruvate dehydrogenase and 1-aminocyclopropane-1-carboxylate oxidase, was validated in apples stored for various periods at different controlled atmosphere conditions, giving rise to potential biomarkers associated with high risk of browning development. CONCLUSIONS: The gene expression data presented in this study will help elucidate the molecular mechanism of browning development in apples at controlled atmosphere storage. A conceptual model, including energy-related (linked to the tricarboxylic acid cycle and the electron transport chain) and lipid-related genes (related to membrane alterations, and fatty acid oxidation), for browning development in apple is proposed, which may be relevant for future studies towards improving the postharvest life of apple.


Asunto(s)
Almacenamiento de Alimentos , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Transcriptoma , Biomarcadores , Frío , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Factores de Tiempo
16.
BMC Plant Biol ; 14: 11, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24401128

RESUMEN

BACKGROUND: Solanum lycopersicum or tomato is extensively studied with respect to the ethylene metabolism during climacteric ripening, focusing almost exclusively on fruit pericarp. In this work the ethylene biosynthesis pathway was examined in all major tomato fruit tissues: pericarp, septa, columella, placenta, locular gel and seeds. The tissue specific ethylene production rate was measured throughout fruit development, climacteric ripening and postharvest storage. All ethylene intermediate metabolites (1-aminocyclopropane-1-carboxylic acid (ACC), malonyl-ACC (MACC) and S-adenosyl-L-methionine (SAM)) and enzyme activities (ACC-oxidase (ACO) and ACC-synthase (ACS)) were assessed. RESULTS: All tissues showed a similar climacteric pattern in ethylene productions, but with a different amplitude. Profound differences were found between tissue types at the metabolic and enzymatic level. The pericarp tissue produced the highest amount of ethylene, but showed only a low ACC content and limited ACS activity, while the locular gel accumulated a lot of ACC, MACC and SAM and showed only limited ACO and ACS activity. Central tissues (septa, columella and placenta) showed a strong accumulation of ACC and MACC. These differences indicate that the ethylene biosynthesis pathway is organized and regulated in a tissue specific way. The possible role of inter- and intra-tissue transport is discussed to explain these discrepancies. Furthermore, the antagonistic relation between ACO and E8, an ethylene biosynthesis inhibiting protein, was shown to be tissue specific and developmentally regulated. In addition, ethylene inhibition by E8 is not achieved by a direct interaction between ACO and E8, as previously suggested in literature. CONCLUSIONS: The Ethylene biosynthesis pathway and E8 show a tissue specific and developmental differentiation throughout tomato fruit development and ripening.


Asunto(s)
Etilenos/metabolismo , Solanum lycopersicum/metabolismo , Aminoácido Oxidorreductasas/metabolismo , Aminoácidos Cíclicos/metabolismo , Regulación de la Expresión Génica de las Plantas , Liasas/metabolismo , Solanum lycopersicum/fisiología
17.
New Phytol ; 202(3): 952-963, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24443955

RESUMEN

The gaseous plant hormone ethylene is involved in many physiological processes including climacteric fruit ripening, in which it is a key determinant of fruit quality. A detailed model that describes ethylene biochemistry dynamics is missing. Often, kinetic modeling is used to describe metabolic networks or signaling cascades, mostly ignoring the link with transcriptomic data. We have constructed an elegant kinetic model that describes the transfer of genetic information into abundance and metabolic activity of proteins for the entire ethylene biosynthesis pathway during fruit development and ripening of tomato (Solanum lycopersicum). Our model was calibrated against a vast amount of transcriptomic, proteomic and metabolic data and showed good descriptive qualities. Subsequently it was validated successfully against several ripening mutants previously described in the literature. The model was used as a predictive tool to evaluate novel and existing hypotheses regarding the regulation of ethylene biosynthesis. This bottom-up kinetic network model was used to indicate that a side-branch of the ethylene pathway, the formation of the dead-end product 1-(malonylamino)-1-aminocyclopropane-1-carboxylic acid (MACC), might have a strong effect on eventual ethylene production. Furthermore, our in silico analyses indicated potential (post-) translational regulation of the ethylene-forming enzyme ACC oxidase.


Asunto(s)
Etilenos/biosíntesis , Frutas/crecimiento & desarrollo , Frutas/genética , Perfilación de la Expresión Génica/métodos , Modelos Biológicos , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Aminoácido Oxidorreductasas/metabolismo , Vías Biosintéticas/genética , Calibración , Frutas/enzimología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Cinética , Solanum lycopersicum/enzimología , Mutación/genética , Reproducibilidad de los Resultados
18.
Ann Bot ; 114(4): 605-17, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24863687

RESUMEN

BACKGROUND AND AIMS: The importance of cell division models in cellular pattern studies has been acknowledged since the 19th century. Most of the available models developed to date are limited to symmetric cell division with isotropic growth. Often, the actual growth of the cell wall is either not considered or is updated intermittently on a separate time scale to the mechanics. This study presents a generic algorithm that accounts for both symmetrically and asymmetrically dividing cells with isotropic and anisotropic growth. Actual growth of the cell wall is simulated simultaneously with the mechanics. METHODS: The cell is considered as a closed, thin-walled structure, maintained in tension by turgor pressure. The cell walls are represented as linear elastic elements that obey Hooke's law. Cell expansion is induced by turgor pressure acting on the yielding cell-wall material. A system of differential equations for the positions and velocities of the cell vertices as well as for the actual growth of the cell wall is established. Readiness to divide is determined based on cell size. An ellipse-fitting algorithm is used to determine the position and orientation of the dividing wall. The cell vertices, walls and cell connectivity are then updated and cell expansion resumes. Comparisons are made with experimental data from the literature. KEY RESULTS: The generic plant cell division algorithm has been implemented successfully. It can handle both symmetrically and asymmetrically dividing cells coupled with isotropic and anisotropic growth modes. Development of the algorithm highlighted the importance of ellipse-fitting to produce randomness (biological variability) even in symmetrically dividing cells. Unlike previous models, a differential equation is formulated for the resting length of the cell wall to simulate actual biological growth and is solved simultaneously with the position and velocity of the vertices. CONCLUSIONS: The algorithm presented can produce different tissues varying in topological and geometrical properties. This flexibility to produce different tissue types gives the model great potential for use in investigations of plant cell division and growth in silico.


Asunto(s)
Algoritmos , Pared Celular/metabolismo , Modelos Biológicos , Desarrollo de la Planta , Plantas/anatomía & histología , Fenómenos Biomecánicos , División Celular , Tamaño de la Célula
19.
Physiol Plant ; 150(2): 161-73, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23957643

RESUMEN

In this study, the short-term and dynamic changes of the ethylene biosynthesis of Jonagold apple during and after application of controlled atmosphere (CA) storage conditions were quantified using a systems biology approach. Rapid responses to imposed temperature and atmospheric conditions were captured by continuous online photoacoustic ethylene measurements. Discrete destructive sampling was done to understand observed changes of ethylene biosynthesis at the transcriptional, translational and metabolic level. Application of the ethylene inhibitor 1-methylcyclopropene (1-MCP) allowed for the discrimination between ethylene-mediated changes and ethylene-independent changes related to the imposed conditions. Online ethylene measurements showed fast and slower responses during and after application of CA conditions. The changes in 1-aminocyclopropane-1-carboxylate synthase (ACS) activity were most correlated with changes in ACS1 expression and regulated the cold-induced increase in ethylene production during the early chilling phase. Transcription of ACS3 was found ethylene independent and was triggered upon warming of CA-stored apples. Increased expression of ACO1 during shelf life led to a strong increase in 1-aminocyclopropane-1-carboxylate oxidase (ACO) activity, required for the exponential production of ethylene during system 2. Expression of ACO2 and ACO3 was upregulated in 1-MCP-treated fruit showing a negative correlation with ethylene production. ACO activity never became rate limiting.


Asunto(s)
Etilenos/biosíntesis , Malus/metabolismo , Ciclopropanos/farmacología , Ambiente Controlado , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Liasas/metabolismo , Malus/efectos de los fármacos , Malus/enzimología , Malus/genética , Temperatura
20.
Food Res Int ; 176: 113802, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163682

RESUMEN

Over the past decade, advanced analytical techniques have been utilized to examine volatile organic compounds (VOCs) in eggs. These VOCs offer valuable insights into factors such as freshness, fertility, the presence of cracks, embryo sex, and breed. In our study, we assessed three mass spectrometry-based systems (headspace sorptive extraction gas chromatography-mass spectrometry; HSSE-GC-MS, proton transfer reaction time-of-flight-mass spectrometry; PTR-TOF-MS; and selected ion flow tube mass spectrometry; SIFT-MS) to analyze and identify VOCs present in intact hatching eggs from three distinct breeds (Dekalb white layer, Shaver brown layer, and Ross 308 broiler). The eggs were sampled on incubation days 2 and 8, to identify VOCs that distinguish breeds irrespective of incubation day. VOC measurements were conducted on 15 eggs per breed by placing them together with PDMS-coated stir bars inside inert Teflon® air sampling bags. After an accumulation period of 2 h, the headspace was analyzed using PTR-TOF-MS and SIFT-MS, while the VOCs adsorbed onto the stir bars were analyzed using GC-MS for additional compound identification. Partial least squares discriminant analysis (PLS-DA) models were constructed for breed differentiation, and variable selection was performed. As a result, 111 VOCs were identified using HSSE-GC-MS, with alcohols and esters being the most abundant. The PLS-DA models demonstrated the efficacy of breed discrimination, with the HSSE-GC-MS and the PTR-TOF-MS exhibiting the highest balanced accuracy of 95.5 % using a reduced set of 11 VOCs and 5 product ions, respectively. The SIFT-MS model had a balanced accuracy of 92.8 % with a reduced set of 11 product ions. Furthermore, complementarity was observed between HSSE-GC-MS, which primarily selected higher molecular weight VOCs, and PTR-TOF-MS and SIFT-MS. A higher correlation was found for compound abundances between the HSSE-GC-MS and the PTR-TOF-MS relative to the SIFT-MS, indicating that the PTR-TOF-MS was better suited to quantify specific compounds identified by the HSSE-GC-MS. Finally, the findings support the presence of VOCs originating from both synthetic and natural sources, highlighting the ability of the VOC analysis systems to non-destructively perform quality control and reveal differences in management practices or biological information encoded in eggs.


Asunto(s)
Compuestos Orgánicos Volátiles , Animales , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Pollos , Espectrometría de Masas/métodos , Protones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA