Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 22(8): 947-957, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34239121

RESUMEN

One of most challenging issues in tumor immunology is a better understanding of the dynamics in the accumulation of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment (TIME), as this would lead to the development of new cancer therapeutics. Here, we show that translationally controlled tumor protein (TCTP) released by dying tumor cells is an immunomodulator crucial to full-blown MDSC accumulation in the TIME. We provide evidence that extracellular TCTP mediates recruitment of the polymorphonuclear MDSC (PMN-MDSC) population in the TIME via activation of Toll-like receptor-2. As further proof of principle, we show that inhibition of TCTP suppresses PMN-MDSC accumulation and tumor growth. In human cancers, we find an elevation of TCTP and an inverse correlation of TCTP gene dosage with antitumor immune signatures and clinical prognosis. This study reveals the hitherto poorly understood mechanism of the MDSC dynamics in the TIME, offering a new rationale for cancer immunotherapy.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Quimiocina CXCL1/metabolismo , Neoplasias Colorrectales/inmunología , Células Supresoras de Origen Mieloide/inmunología , Receptor Toll-Like 2/inmunología , Microambiente Tumoral/inmunología , Alarminas/genética , Alarminas/metabolismo , Animales , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Femenino , Células HEK293 , Humanos , Inmunoterapia , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Células RAW 264.7 , Proteína Tumoral Controlada Traslacionalmente 1
2.
Proc Natl Acad Sci U S A ; 120(24): e2305245120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276392

RESUMEN

The activation and expansion of T cells that recognize cancer cells is an essential aspect to antitumor immunity. Tumors may escape destruction by the immune system through ectopic expression of inhibitory immune ligands typically exemplified by the PD-L1/PD-1 pathway. Here, we reveal another facet of tumor evasion from T cell surveillance. By secretome profiling of necrotic tumor cells, we identified an oncometabolite spermidine as a unique inhibitor of T cell receptor (TCR) signaling. Mechanistically, spermidine causes the downregulation of the plasma membrane cholesterol levels, resulting in the suppression of TCR clustering. Using syngeneic mouse models, we show that spermidine is abundantly detected in the tumor immune microenvironment (TIME) and that administration of the polyamine synthesis inhibitor effectively enhanced CD8+ T cell-dependent antitumor responses. Further, the combination of the polyamine synthesis inhibitor with anti-PD-1 immune checkpoint antibody resulted in a much stronger antitumor immune response. This study reveals an aspect of immunosuppressive TIME, wherein spermidine functions as a metabolic T cell checkpoint that may offer a unique approach for promoting tumor immunotherapy.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Espermidina/farmacología , Espermidina/metabolismo , Linfocitos T CD8-positivos , Neoplasias/metabolismo , Antineoplásicos/farmacología , Inmunoterapia/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Microambiente Tumoral , Línea Celular Tumoral , Antígeno B7-H1/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443188

RESUMEN

Dysregulation of inflammatory cytokines in keratinocytes promote the pathogenesis of the skin inflammation, such as allergic contact dermatitis (ACD). High-mobility group box 1 protein (HMGB1) has been implicated in the promotion of skin inflammation upon its extracellular release as a damage-associated molecular pattern molecule. However, whether and how HMGB1 in keratinocytes contributes to ACD and other skin disorders remain elusive. In this study, we generated conditional knockout mice in which the Hmgb1 gene is specifically deleted in keratinocytes, and examined its role in ACD models. Interestingly, the mutant mice showed exacerbated skin inflammation, accompanied by increased ear thickening in 2,4-dinitrofluorobenezene-induced ACDs. The mRNA expression of interleukin-24 (IL-24), a cytokine known to critically contribute to ACD pathogenesis, was elevated in skin lesions of the mutant mice. As with constitutively expressed, IL-4-induced Il24 mRNA, expression was also augmented in the Hmgb1-deficient keratinocytes, which would account for the exacerbation of ACD in the mutant mice. Mechanistically, we observed an increased binding of trimethyl histone H3 (lys4) (H3K4me3), a hallmark of transcriptionally active genes, to the promoter region of the Il24 gene in the hmgb1-deficient cells. Thus, the nuclear HMGB1 is a critical "gate keeper" in that the dermal homeostasis is contingent to its function in chromatin remodeling. Our study revealed a facet of nuclear HMGB1, namely its antiinflammatory function in keratinocytes for the skin homeostasis.


Asunto(s)
Ensamble y Desensamble de Cromatina , Dermatitis Alérgica por Contacto/metabolismo , Proteína HMGB1/metabolismo , Histonas/metabolismo , Interleucinas/metabolismo , Queratinocitos/metabolismo , Animales , Dermatitis Alérgica por Contacto/genética , Dermatitis Alérgica por Contacto/prevención & control , Dinitrofluorobenceno/toxicidad , Modelos Animales de Enfermedad , Oído/patología , Eliminación de Gen , Regulación de la Expresión Génica/genética , Proteína HMGB1/deficiencia , Proteína HMGB1/genética , Inflamación/genética , Inflamación/metabolismo , Interleucina-4/farmacología , Interleucinas/genética , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas , Piel/inmunología , Piel/metabolismo , Piel/patología , Quimera por Trasplante
4.
Int J Mol Sci ; 22(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063828

RESUMEN

Inflammation, especially chronic inflammation, plays a pivotal role in tumorigenesis and metastasis through various mechanisms and is now recognized as a hallmark of cancer and an attractive therapeutic target in cancer. In this review, we discuss recent advances in molecular mechanisms of how inflammation promotes tumorigenesis and metastasis and suppresses anti-tumor immunity in various types of solid tumors, including esophageal, gastric, colorectal, liver, and pancreatic cancer as well as hematopoietic malignancies.


Asunto(s)
Carcinogénesis/patología , Inflamación/patología , Metástasis de la Neoplasia/patología , Animales , Neoplasias Hematológicas/patología , Humanos
5.
Cancer Sci ; 109(7): 2130-2140, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29790621

RESUMEN

Adoptive T-cell therapy is an effective strategy for cancer immunotherapy. However, infused T cells frequently become functionally exhausted, and consequently offer a poor prognosis after transplantation into patients. Adoptive transfer of tumor antigen-specific stem cell memory T (TSCM ) cells is expected to overcome this shortcoming as TSCM cells are close to naïve T cells, but are also highly proliferative, long-lived, and produce a large number of effector T cells in response to antigen stimulation. We previously reported that activated effector T cells can be converted into TSCM -like cells (iTSCM ) by coculturing with OP9 cells expressing Notch ligand, Delta-like 1 (OP9-hDLL1). Here we show the methodological parameters of human CD8+ iTSCM cell generation and their application to adoptive cancer immunotherapy. Regardless of the stimulation by anti-CD3/CD28 antibodies or by antigen-presenting cells, human iTSCM cells were more efficiently induced from central memory type T cells than from effector memory T cells. During the induction phase by coculture with OP9-hDLL1 cells, interleukin (IL)-7 and IL-15 (but not IL-2 or IL-21) could efficiently generate iTSCM cells. Epstein-Barr virus-specific iTSCM cells showed much stronger antitumor potentials than conventionally activated T cells in humanized Epstein-Barr virus transformed-tumor model mice. Thus, adoptive T-cell therapy with iTSCM offers a promising therapeutic strategy for cancer immunotherapy.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Neoplasias , Células Madre/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T/inmunología , Animales , Línea Celular , Humanos , Memoria Inmunológica , Activación de Linfocitos/inmunología , Ratones , Neoplasias/inmunología
6.
Biochem Biophys Res Commun ; 447(3): 471-8, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24732356

RESUMEN

Th17 cells, which have been implicated in autoimmune diseases, require IL-6 and TGF-ß for early differentiation. To gain pathogenicity, however, Th17 cells require IL-1ß and IL-23. The underlying mechanism by which these confer pathogenicity is not well understood. Here we show that Sprouty4, an inhibitor of the PLCγ-ERK pathway, critically regulates inflammatory Th17 (iTh17) cell differentiation. Sprouty4-deficient mice, as well as mice adoptively transferred with Sprouty4-deficient T cells, were resistant to experimental autoimmune encephalitis (EAE) and showed decreased Th17 cell generation in vivo. In vitro, Sprouty4 deficiency did not severely affect TGF-ß/IL-6-induced Th17 cell generation but strongly impaired Th17 differentiation induced by IL-1/IL-6/IL-23. Analysis of Th17-related gene expression revealed that Sprouty4-deficient Th17 cells expressed lower levels of IL-1R1 and IL-23R, while RORγt levels were similar. Consistently, overexpression of Sprouty4 or pharmacological inhibition of ERK upregulated IL-1R1 expression in primary T cells. Thus, Sprouty4 and ERK play a critical role in developing iTh17 cells in Th17 cell-driven autoimmune diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Interleucina-1beta/metabolismo , Proteínas del Tejido Nervioso/fisiología , Receptores Tipo I de Interleucina-1/metabolismo , Células Th17/inmunología , Animales , Encefalomielitis Autoinmune Experimental/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Receptores Tipo I de Interleucina-1/genética
7.
Hepatol Res ; 44(1): 31-42, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23617364

RESUMEN

Studies have shown that alterations of epigenetics and microRNA (miRNA) play critical roles in the initiation and progression of hepatocellular carcinoma (HCC). Epigenetic silencing of tumor suppressor genes in HCC is generally mediated by DNA hypermethylation of CpG island promoters and histone modifications such as histone deacetylation, methylation of histone H3 lysine 9 (H3K9) and tri-methylation of H3K27. Chromatin-modifying drugs such as DNA methylation inhibitors and histone deacetylase inhibitors have shown clinical promise for cancer therapy. miRNA are small non-coding RNA that regulate expression of various target genes. Specific miRNA are aberrantly expressed and play roles as tumor suppressors or oncogenes during hepatocarcinogenesis. We and other groups have demonstrated that important tumor suppressor miRNA are silenced by epigenetic alterations, resulting in activation of target oncogenes in human malignancies including HCC. Restoring the expression of tumor suppressor miRNA by inhibitors of DNA methylation and histone deacetylase may be a promising therapeutic strategy for HCC.

8.
Int J Cancer ; 132(8): 1751-60, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23001726

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs that function as endogenous silencers of target genes and play critical roles during carcinogenesis. The selective cyclooxygenase-2 (COX-2) inhibitor celecoxib has been highlighted as a potential drug for treatment of gastrointestinal tumors. The aim of this study was to investigate the role of miRNAs in gastric carcinogenesis and the feasibility of a new therapeutic approach for gastric cancer. miRNA expression profiles were examined in 53 gastric tumors including gastric adenomas (atypical epithelia), early gastric cancers and advanced gastric cancers and in gastric cancer cells treated with celecoxib. miRNA microarray analysis revealed that miR-29c was significantly downregulated in gastric cancer tissues relative to nontumor gastric mucosae. miR-29c was significantly activated by celecoxib in gastric cancer cells. Downregulation of miR-29c was associated with progression of gastric cancer and was more prominent in advanced gastric cancers than in gastric adenomas and early gastric cancer. In addition, expression of the oncogene Mcl-1, a target of miR-29c, was significantly increased in gastric cancer tissues relative to nontumor gastric mucosae. Activation of miR-29c by celecoxib induced suppression of Mcl-1 and apoptosis in gastric cancer cells. These results suggest that downregulation of the tumor suppressor miR-29c plays critical roles in the progression of gastric cancer. Selective COX-2 inhibitors may have clinical promise for the treatment of gastric cancer via restoration of miR-29c.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/farmacología , Regulación hacia Abajo , MicroARNs/metabolismo , Pirazoles/farmacología , Neoplasias Gástricas/genética , Sulfonamidas/farmacología , Secuencia de Bases , Western Blotting , Celecoxib , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Cartilla de ADN , Progresión de la Enfermedad , Humanos , Inmunohistoquímica , Hibridación in Situ , MicroARNs/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Neoplasias Gástricas/patología
9.
PNAS Nexus ; 2(10): pgad306, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37822765

RESUMEN

An acidic tumor microenvironment plays a critical role in tumor progression. However, understanding of metabolic reprogramming of tumors in response to acidic extracellular pH has remained elusive. Using comprehensive metabolomic analyses, we demonstrated that acidic extracellular pH (pH 6.8) leads to the accumulation of N1-acetylspermidine, a protumor metabolite, through up-regulation of the expression of spermidine/spermine acetyltransferase 1 (SAT1). Inhibition of SAT1 expression suppressed the accumulation of intra- and extracellular N1-acetylspermidine at acidic pH. Conversely, overexpression of SAT1 increased intra- and extracellular N1-acetylspermidine levels, supporting the proposal that SAT1 is responsible for accumulation of N1-acetylspermidine. While inhibition of SAT1 expression only had a minor effect on cancer cell growth in vitro, SAT1 knockdown significantly decreased tumor growth in vivo, supporting a contribution of the SAT1-N1-acetylspermidine axis to protumor immunity. Immune cell profiling revealed that inhibition of SAT1 expression decreased neutrophil recruitment to the tumor, resulting in impaired angiogenesis and tumor growth. We showed that antineutrophil-neutralizing antibodies suppressed growth in control tumors to a similar extent to that seen in SAT1 knockdown tumors in vivo. Further, a SAT1 signature was found to be correlated with poor patient prognosis. Our findings demonstrate that extracellular acidity stimulates recruitment of protumor neutrophils via the SAT1-N1-acetylspermidine axis, which may represent a metabolic target for antitumor immune therapy.

10.
Cell Rep ; 24(6): 1627-1638.e6, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30089271

RESUMEN

Regulatory T (Treg) cells develop from a self-reactive, CD4-single positive (CD4SP) precursor cell pool. Thus, Treg-fated developing thymocytes are expected to possess the potential to generate pathogenic self-reactive cells. However, no such pathogenic conversion has been observed, indicating mechanisms of defense to prevent such a deleterious event. Here, we show that, after the initial developmental phase, the Nr4a family of nuclear receptors promotes the development of Treg cells by cooperating with other Treg cell developmental machineries, as well as by forming a reinforcing loop with Foxp3. Nr4a-deficient Treg-fated thymocytes survive and can elicit autoimmunity, highlighting their roles in elimination of developing Treg precursors that fail to complete their development. Our findings reveal that the defective development of Treg-fated thymocytes is a potential route for the generation of pathogenic self-reactive cells, which is normally suppressed by Nr4a factors at both developmental and cell death levels.


Asunto(s)
Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Diferenciación Celular , Humanos , Ratones , Transfección
11.
Cancer Res ; 78(11): 3027-3040, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29559474

RESUMEN

Enhanced infiltration of regulatory T cells (Treg) into tumor tissue is detrimental to patients with cancer and is closely associated with poor prognosis as they create an immunosuppressive state that suppresses antitumor immune responses. Therefore, breaking Treg-mediated immune tolerance is important when considering cancer immunotherapy. Here, we show that the Nr4a nuclear receptors, key transcription factors maintaining Treg genetic programs, contribute to Treg-mediated suppression of antitumor immunity in the tumor microenvironment. Mice lacking Nr4a1 and Nr4a2 genes specifically in Tregs showed resistance to tumor growth in transplantation models without exhibiting any severe systemic autoimmunity. The chemotherapeutic agent camptothecin and a common cyclooxygenase-2 inhibitor were found to inhibit transcriptional activity and induction of Nr4a factors, and they synergistically exerted antitumor effects. Genetic inactivation or pharmacologic inhibition of Nr4a factors unleashed effector activities of CD8+ cytotoxic T cells and evoked potent antitumor immune responses. These findings demonstrate that inactivation of Nr4a in Tregs breaks immune tolerance toward cancer, and pharmacologic modulation of Nr4a activity may be a novel cancer treatment strategy targeting the immunosuppressive tumor microenvironment.Significance: This study reveals the role of Nr4a transcription factors in Treg-mediated tolerance to antitumor immunity, with possible therapeutic implications for developing effective anticancer therapies. Cancer Res; 78(11); 3027-40. ©2018 AACR.


Asunto(s)
Autoinmunidad/inmunología , Tolerancia Inmunológica/inmunología , Receptores Citoplasmáticos y Nucleares/inmunología , Linfocitos T Reguladores/inmunología , Animales , Autoinmunidad/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Células HEK293 , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Inmunoterapia/métodos , Ratones , Ratones Endogámicos C57BL , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Transcripción Genética/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
12.
Cell Rep ; 20(5): 1017-1028, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28768188

RESUMEN

Programmed cell death 1 (PD-1) is highly expressed on exhausted T cells and inhibits T cell activation. Antibodies that block the interaction between PD-1 and its ligand prevent this inhibitory signal and reverse T cell dysfunction, providing beneficial anti-tumor responses in a substantial number of patients. Mechanisms for the induction and maintenance of high PD-1 expression on exhausted T cells have not been fully understood. Utilizing a genome-wide loss-of-function screening method based on the CRISPR-Cas9 system, we identified genes involved in the core fucosylation pathway as positive regulators of cell-surface PD-1 expression. Inhibition of Fut8, a core fucosyltransferase, by genetic ablation or pharmacologic inhibition reduced cell-surface expression of PD-1 and enhanced T cell activation, leading to more efficient tumor eradication. Taken together, our findings suggest that blocking core fucosylation of PD-1 can be a promising strategy for improving anti-tumor immune responses.


Asunto(s)
Fucosiltransferasas , Regulación Neoplásica de la Expresión Génica/inmunología , Inmunidad Celular , Proteínas de Neoplasias , Neoplasias Experimentales , Receptor de Muerte Celular Programada 1 , Linfocitos T/inmunología , Animales , Sistemas CRISPR-Cas , Fucosiltransferasas/genética , Fucosiltransferasas/inmunología , Estudio de Asociación del Genoma Completo , Glicosilación , Humanos , Activación de Linfocitos , Ratones , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Neoplasias Experimentales/genética , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T/patología
13.
Adv Immunol ; 124: 249-73, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25175778

RESUMEN

Regulatory T (Treg) cells, as central mediators of immune suppression, play crucial roles in many aspects of immune system's physiology and pathophysiology. The transcription factor Foxp3 has been characterized as a master gene of Tregs. Yet Treg cells possess a distinct pattern of gene expression, including upregulation of immune-suppressive genes and silencing of inflammatory cytokine genes. Recent studies have revealed the molecular mechanisms that establish and maintain such gene regulation in Treg cells. This review discusses recent progress in our understanding of molecular features of Treg cells, with particular attention to Treg-cell lineage commitment and stability.


Asunto(s)
Epigénesis Genética , Factores de Transcripción Forkhead/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Diferenciación Celular , Linaje de la Célula , Regulación de la Expresión Génica , Humanos , Tolerancia Inmunológica , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA