Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 534: 179-185, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33298313

RESUMEN

Neurite outgrowth is important in neuronal circuit formation and functions, and for regeneration of neuronal networks following trauma and disease in the brain. Thus, identification and characterization of the molecules that regulate neurite outgrowth are essential for understanding how brain circuits form and function and for the development of treatment of neurological disorders. In this study, we found that structurally different lysophosphatidylethanolamine (LPE) species, palmitoyl-LPE (16:0 LPE) and stearoyl-LPE (18:0 LPE), stimulate neurite growth in cultured cortical neurons. Interestingly, YM-254890, an inhibitor of Gq/11 protein, inhibited 16:0 LPE-stimulated neurite outgrowth but not 18:0 LPE-stimulated neurite outgrowth. In contrast, pertussis toxin, an inhibitor of Gi/Go proteins, inhibited 18:0 LPE-stimulated neurite outgrowth but not 16:0 LPE-stimulated neurite outgrowth. The effects of protein kinase C inhibitors on neurite outgrowth were also different. In addition, both 16:0 LPE and 18:0 LPE activate mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 1/2, but the effect of the MAPK inhibitor differed between the 16:0 LPE- and 18:0 LPE-treated cultures. Collectively, the results suggest that the structurally different LPE species, 16:0 LPE and 18:0 LPE stimulate neurite outgrowth through distinct signaling cascades in cultured cortical neurons and that distinct G protein-coupled receptors are involved in these processes.


Asunto(s)
Lisofosfolípidos/farmacología , Proyección Neuronal/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Axones/efectos de los fármacos , Axones/ultraestructura , Encéfalo/citología , Butadienos/farmacología , Células Cultivadas , Dendritas/efectos de los fármacos , Dendritas/ultraestructura , Yema de Huevo/química , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/antagonistas & inhibidores , Proteínas de Unión al GTP Heterotriméricas/antagonistas & inhibidores , Lisofosfolípidos/química , Ratones Endogámicos ICR , Neuronas/efectos de los fármacos , Neuronas/enzimología , Nitrilos/farmacología , Péptidos Cíclicos/farmacología , Toxina del Pertussis/farmacología , Inhibidores de Proteínas Quinasas/farmacología
2.
J Biochem ; 170(3): 327-336, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33822960

RESUMEN

Lysophosphatidylethanolamines (LPEs) are bioactive lysophospholipids that have been suggested to play important roles in several biological processes. We performed a quantitative analysis of LPE species and showed their composition in mouse brain. We examined the roles of oleoyl-LPE (18:1 LPE), which is one of the abundant LPE species in brain. In cultured cortical neurons, application of 18:1 LPE-stimulated neurite outgrowth. The effect of 18:1 LPE on neurite outgrowth was inhibited by Gq/11 inhibitor YM-254890, phospholipase C (PLC) inhibitor U73122, protein kinase C (PKC) inhibitor Go6983 or mitogen-activated protein kinase (MAPK) inhibitor U0126. Additionally, 18:1 LPE increased the phosphorylation of MAPK/extracellular signal-regulated kinase 1/2. These results suggest that the action of 18:1 LPE on neurite outgrowth is mediated by the Gq/11/PLC/PKC/MAPK pathway. Moreover, we found that application of 18:1 LPE protects neurons from glutamate-induced excitotoxicity. This effect of 18:1 LPE was suppressed by PKC inhibitor Go6983. These results suggest that 18:1 LPE protects neurons from glutamate toxicity via PKC inhibitor Go6983-sensitive PKC subtype. Collectively, our results demonstrated that 18:1 LPE stimulates neurite outgrowth and protects against glutamate toxicity in cultured cortical neurons. Our findings provide insights into the physiological or pathological roles of 18:1 LPE in the brain.


Asunto(s)
Encéfalo/efectos de los fármacos , Ácido Glutámico/toxicidad , Lisofosfolípidos/farmacología , Proyección Neuronal/efectos de los fármacos , Neuronas/metabolismo , Animales , Encéfalo/metabolismo , Células Cultivadas , Cromatografía Liquida/métodos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuritas/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Transducción de Señal/efectos de los fármacos , Espectrometría de Masa por Ionización de Electrospray/métodos , Fosfolipasas de Tipo C/metabolismo
3.
Invert Neurosci ; 7(1): 39-46, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17205299

RESUMEN

The noncompetitive antagonist of ionotropic gamma-aminobutyric acid (GABA) receptors 4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB) is a useful tool to probe the antagonist-binding site. In the present study, four mutants of the human GABA(A) receptor beta3 subunit were stably expressed in S2 cells and examined for their abilities to bind [(3)H]EBOB to identify the binding site of EBOB. The homo-oligomeric beta3 GABA receptor was used as a housefly GABA receptor model, as the beta3 subunit has a high sequence similarity with the housefly Rdl subunit in the second membrane-spanning (M2) region. The A274S mutation at the -1' position in the M2 region had no effect on [(3)H]EBOB binding. The A277S mutation at the 2' position led to a decrease in the affinity of EBOB for the GABA receptor. The T281V mutant at the 6' position and the A277S/T281V double mutant completely abolished the binding ability. A beta3 GABA receptor homology model predicts these interactions between the receptor and EBOB. These results suggest that EBOB interacts with threonine 281 and alanine 277, and that threonine 281 plays a more critical role in interacting with EBOB than alanine 277.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Insecticidas/farmacología , Receptores de GABA-A/fisiología , Sustitución de Aminoácidos , Sitios de Unión , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Cartilla de ADN , Humanos , Modelos Moleculares , Conformación Molecular , Reacción en Cadena de la Polimerasa , Conformación Proteica , Receptores de GABA-A/química , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/genética , Relación Estructura-Actividad , Tritio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA