Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Chemistry ; 28(19): e202104575, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35170133

RESUMEN

Weak light absorption of common Ir(III) complexes (e. g., using phenylpyridine as the ligand) has hindered their applications in photocatalytic hydrogen generation from water as an efficient photosensitizer. To address this issue, a series of cyclometalated Ir(III) complexes (Ir1-Ir5), featuring different electron-donating substituents to enhance the absorptivity, have been synthesized and studied as photosensitizers (PSs) for light-driven hydrogen production from water. Ir6-Ir7 were prepared as fundamental systems for comparisons. Electron donors, including 9-phenylcarbazole, triphenylamine, 4,4'-dimethoxytriphenylamine, 4,4'-di(N-hexylcarbazole)triphenylamine moieties were introduced on 6-(thiophen-2-yl)phenanthridine-based cyclometalating (C^N) ligands to explore the donor effect on the hydrogen evolution performance of these cationic Ir(III) complexes. Remarkably, Ir4 with 4,4'-dimethoxytriphenylamine achieved the highest turn-over number (TON) of 12 300 and initial turnover frequency (TOFi ) of 394 h-1 , with initial activity (activityi ) of 547 000 µmol g-1 h-1 and initial apparent quantum yield (AQYi ) of 9.59 %, under the illumination of blue light-emitting diodes (LEDs) for 105 hours, which demonstrated a stable three-component photocatalytic system with high efficiency. The TON (based on n(H2 )/n(PSr)) in this study is the highest value reported to date among the similar photocatalytic systems using Ir(III) complexes with Pt nanoparticles as catalyst. The great potential of using triphenylamine-based Ir(III) PSs in boosting photocatalytic performance has also been shown.

2.
Inorg Chem ; 61(10): 4384-4393, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35243862

RESUMEN

Three multi-dentate coordinated chelates LnH2 (n = 1, 2, and 3), comprising a linked 1-(pyridin-2-yl)ethylbenzene and one pyrazolyl pyridine unit and showing either tridentate or tetradentate coordination modes, are successfully designed and synthesized. Dinuclear Ir(III) complexes [Ir(κ4-Ln)(µ-Cl)]2 bearing tetradentate coordinated κ4-Ln chelate (2a, n = 1; 2b, n = 2; 2c, n = 3) were next obtained en route from the respective intermediate [Ir(κ3-LnH)Cl(µ-Cl)]2 bearing the tridentate coordinated κ3-LnH chelate (1a, n = 1; 1b, n = 2; 1c, n = 3). Next, mononuclear Ir(III) complexes Ir(κ4-Ln)(thd) (3a, n = 1; 3b, n = 2; 3c, n = 3) with the tetradentate chelate were obtained upon treatment of 2 with 2,2,6,6-tetramethyl-3,5-heptanedione (thd)H in the presence of K2CO3. Concurrently, methylation of 2c in the presence of MeI and nBu4NCl afforded tridentate Ir(κ3-L3HMe)Cl3 (4) and, next, can be converted to tetradentate Ir(κ4-L3Me)Cl2 (5) by further cyclometalation and HCl elimination in refluxing diethylene glycol monoethyl ether solution. The Ir(III) complexes 3a, 4, and 5 were unambiguously identified using spectroscopic methods, together with single-crystal X-ray structural analyses on Ir(III) derivatives 3a, 4, and 5. Their photophysical and ,electrochemical properties and device fabrication properties were also investigated and compared with results from theoretical studies.

3.
Chem Soc Rev ; 47(13): 4934-4953, 2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-29774340

RESUMEN

In recent years, metallopolymers have attracted much attention as precursors to generate magnetic metal/metal alloy nanoparticles (NPs) through pyrolysis or photolysis because they offer the advantages of ease of solution processability, atomic level mixing and stoichiometric control over composition. The as-generated NPs usually possess narrow size distributions with precise control of composition and density per unit area. Moreover, patterned NPs can be achieved on various substrates in this way owing to the good film-forming property of metallopolymers and such work is important for many applications based on metal nanostructures. By combining the merits of both the solution processability of metallopolymers and nanoimprint lithography (NIL), a new platform can be created for fabricating bit-patterned media (BPM) and the next-generation of nanoscale ultra-high-density magnetic data storage devices. Furthermore, most of these metallopolymers can be used directly as a negative-tone resist to generate magnetic metallic nanostructures by electron-beam lithography and UV photolithography. Self-assembly and subsequent pyrolysis of metalloblock copolymers can also afford well-patterned magnetic metal or metal alloy NPs in situ with periodicity down to dozens of nanometers. In this review, we highlight the use of metallopolymer precursors for the synthesis of magnetic metal/metal alloy NPs and their nanostructures and the related applications.

4.
Inorg Chem ; 56(5): 2409-2416, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28195717

RESUMEN

It is well-known that the variation of noncovalent interactions of luminophores, such as π-π interaction, metal-to-metal interaction, and hydrogen-bonding interaction, can regulate their emission colors. Electrostatic interaction is also an important noncovalent interaction. However, very few examples of luminescence color tuning induced by electrostatic interaction were reported. Herein, a series of Zn(II)-bis(terpyridine) complexes (Zn-AcO, Zn-BF4, Zn-ClO4, and Zn-PF6) containing different anionic counterions were reported, which exhibit counterion-dependent emission colors from green-yellow to orange-red (549 to 622 nm) in CH2Cl2 solution. More importantly, it was found that the excited states of these Zn(II) complexes can be regulated by changing the electrostatic interaction between Zn2+ and counterions. On the basis of this controllable excited state, white light emission has been achieved by a single molecule, and a white light-emitting device has been fabricated. Moreover, a novel type of data decryption system with Zn-PF6 as the optical recording medium has been developed by the two-photon excitation technique. Our results suggest that rationally controlled excited states of these Zn(II) complexes by regulating electrostatic interaction have promising applications in various optoelectronic fields, such as light-emitting devices, information recording, security protection, and so on.

5.
Inorg Chem ; 56(17): 10311-10324, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28825489

RESUMEN

A new series of bimetallic Cu(I) complexes 1-5 triply bridged by a monoanionic or charge-neutral functionalized 3-(2'-pyridyl)-1,2,4-triazole in a µ-η1(N),η2(N,N) tridentate binding mode and two bis(diphenylphosphino)methane (dppm) ligands have been synthesized. Complexes 1-5 are singly or doubly charged dinuclear Cu(I) species with an eight-membered Cu2C2P4 ring of {Cu(µ-dppm)2Cu} unit, in which 3 and 4 adopt the boat-boat conformation, while 1, 2, and 5 display the chair-boat form. In these dimeric copper(I) complex cations, one of the two Cu(I) ions is four-coordinated, in a highly distorted N2P2 tetrahedral environment and the other is three-coordinated, in a distorted NP2 trigonal planar arrangement. All these Cu(I) complexes exhibit a comparatively weak low-energy absorption in CH2Cl2 solution, ascribed to the charge-transfer transitions with appreciable 1MLCT contribution, as suggested by time-dependent density functional theory (TDDFT) analyses. Complexes 1-5 display good emission properties in both solution and solid states at ambient temperature, which are well-modulated via structural modification of 3-(2'-pyridyl)-1,2,4-triazole, including the alteration of the substituent type (-CF3, -H, -CH3, and -C(CH3)3) and position (ortho-, meta-, and para-position). Furthermore, the variation of the substituent (-CF3 and -C(CH3)3) on the 5-site of the 1,2,4-triazolyl ring markedly influences the proton activity of the 1,2,4-triazolyl-NH, thus leading to the formation of both singly and doubly charged bimetallic Cu(I) species regulated by the NH ↔ N- conversion, resulting from NH deprotonation of the 1,2,4-triazolyl ring.

6.
Chem Soc Rev ; 45(19): 5264-95, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27430525

RESUMEN

Insertion of transition metal elements into organic polymeric scaffolds enables a nice coupling of the intriguing physical traits of metal complexes such as electronic, optical and magnetic properties with the solution processability of carbon-based macromolecules. The propensity of these metal-based polymers towards exhibiting metal-metal interactions can also provide additional means for manipulating the structural order and electronic coupling in the molecules. Among these metallopolymers, rigid-rod transition metal σ-acetylide polymers, or polymetallaynes in short, are of much current interest. These organometallic polymers are important functional materials showing unique characteristics including electrical semiconductivity, photo-/electroluminescence, non-linear optical properties, liquid crystallinity, chemosensing capability and photovoltaic effect. Recently, there has been an impressive progress of functional polymetallaynes consisting of a variety of conjugated organic bridging moieties and transition metals. In this review, we summarize the structure-property-function relationships of polymetallaynes of different transition metals, with a major focus on the effect of transition metals and the structural modification of ligands in activating their multifunctional properties. Different emerging applications can thus be realized, for example, as the converters for both light/electricity signals, sensor protectors against intense laser beam and patternable precursors to magnetic metal alloy nanoparticles for data storage, etc.

7.
Chemistry ; 22(11): 3750-7, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26660631

RESUMEN

Three new unsymmetrical phenothiazine-based platinum(II) bis(acetylide) complexes PT1-PT3 with different electron-donating arylacetylide ligands were synthesized and characterized. Their photophysical, electrochemical, and photovoltaic properties have been fully investigated and the density functional theory (DFT) calculations have been carried out. Under AM 1.5 irradiation (100 mW cm(-2)), the PT1-based dye-sensitized solar cell (DSSC) device exhibited an attractive power conversion efficiency (η) up to 5.78 %, with a short-circuit photocurrent density (J(sc)) of 10.98 mA cm(-2), an open-circuit photovoltage (V(oc)) of 0.738 V, and a fill factor (ff) of 0.713. These findings provide strong evidence that platinum-acetylide complexes have great potential as promising photosensitizers in DSSC applications.

8.
Inorg Chem ; 55(4): 1720-7, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26814683

RESUMEN

Phosphorescent dinuclear iridium(III) complexes that can show high luminescent efficiencies and good electroluminescent abilities are very rare. In this paper, highly phosphorescent 2-phenylpyrimidine-based dinuclear iridium(III) complexes have been synthesized and fully characterized. Significant differences of the photophysical and electrochemical properties between the mono- and dinuclear complexes are observed. The theoretical calculation results show that the dinuclear complexes adopt a unique molecular orbital spatial distribution pattern, which plays the key role of determining their photophysical and electrochemical properties. More importantly, the solution-processed organic light-emitting diode (OLED) based on the new dinuclear iridium(III) complex achieves a peak external quantum efficiency (η(ext)) of 14.4%, which is the highest η(ext) for OLEDs using dinuclear iridium(III) complexes as emitters. Besides, the efficiencies of the OLED based on the dinuclear iridium(III) complex are much higher that those of the OLED based on the corresponding mononuclear iridium(III) complex.

9.
Org Biomol Chem ; 12(32): 6128-33, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-24991968

RESUMEN

Cysteine (Cys) plays important roles in many physiological processes of eukaryotic cells and its detection in cells is of fundamental significance. However, glutathione (GSH), homocysteine, N-acetyl-L-cysteine and other thiols greatly hamper the detection of Cys. In particular, GSH strongly interferes with the detection of cellular Cys (30­200 µM) due to its high intracellular concentration (1­10 mM). In this work, an off­on fluorescent probe (HOTA) for the detection of Cys is presented. This probe possesses both excellent sensitivity and satisfactory selectivity for cellular Cys detection: with the addition of 200 µM Cys, the fluorescence intensity of the probe (10 µM) enhanced 117-fold and the detection limit was calculated to be 13.47 µM, which is lower than the cellular Cys concentration; the probe also selectively detected 30­200 µM cysteine over 1­10 mM glutathione. Consequently, cell imaging experiments were performed with probe HOTA. Furthermore, the results of the thiol-blocking and GSH synthesis inhibiting experiments confirmed that the intracellular emission mainly originates from the interaction between Cys and HOTA.


Asunto(s)
Cisteína/metabolismo , Colorantes Fluorescentes/química , Glutatión/metabolismo , Espacio Intracelular/metabolismo , Línea Celular Tumoral , Humanos , Espectrometría de Fluorescencia
10.
Artículo en Inglés | MEDLINE | ID: mdl-39368069

RESUMEN

A novel series of donor-donor-π-acceptor (D-D-π-A) 9,9'-dihexylfluorene-based dianchoring organic dyes, each featuring distinct bridging electron-donating moieties, have been synthesized and characterized. Their performances in photocatalytic hydrogen evolution (PHE) were evaluated, taking into account of their photophysical and electrochemical attributes. Remarkably, (Z)-3-(5-(4-((4-(5-((E)-2-carboxy-2-cyanovinyl)thiophen-2-yl)phenyl)(9,9-dihexyl-9H-fluoren-2-yl)amino)phenyl)thiophen-2-yl)-2-cyanoacrylic acid achieved an active and robust H2 generation system with a turnover number (TON) of up to 17 400 in 126 h, with a production of 1090 µmol (26.3 mL) of hydrogen. The initial turnover frequency (TOFi), initial activity (activityi), and initial apparent quantum yield (AQYi) were 808 h-1, 505 mmol g-1 h-1, and 8.65%, respectively, under visible light irradiation in water. This photosensitizer is considered one of the most effective and durable systems for photocatalytic hydrogen production that attached to molecular Pt-TiO2, as stated out in the literature using organic dyes under visible light, when compared the TOF and TON values. The experimental results demonstrated that the dianchoring dyes with bridging units could significantly enhance PHE performance, maintaining justifiable durability over prolonged irradiation.

11.
Autops Case Rep ; 12: e2021369, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35496737

RESUMEN

Epidermoid cyst in an intrapancreatic accessory spleen is a rare benign lesion that is difficult to diagnose preoperatively. Cyst fluid analysis for biochemistry markers has been widely used to aid the diagnosis of pancreatic cysts. A high cyst fluid carcinoembryonic antigen (CEA) level (>800 ng/mL) is said to be useful in distinguishing intraductal papillary mucinous neoplasm (IPMN) and mucinous cystic neoplasm (MCN) from other non-mucinous cysts. We herein report a case of epidermoid cyst in an intrapancreatic accessory spleen with abnormally high CEA level (3582 ng/mL) in the cyst fluid, suggesting a potential pitfall in using cyst fluid CEA level as an indicator of mucinous neoplasms.

12.
Acc Chem Res ; 43(9): 1246-56, 2010 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-20608673

RESUMEN

Energy remains one of the world's great challenges. Growing concerns about limited fossil fuel resources and the accumulation of CO(2) in the atmosphere from burning those fuels have stimulated tremendous academic and industrial interest. Researchers are focusing both on developing inexpensive renewable energy resources and on improving the technologies for energy conversion. Solar energy has the capacity to meet increasing global energy needs. Harvesting energy directly from sunlight using photovoltaic technology significantly reduces atmospheric emissions, avoiding the detrimental effects of these gases on the environment. Currently inorganic semiconductors dominate the solar cell production market, but these materials require high technology production and expensive materials, making electricity produced in this manner too costly to compete with conventional sources of electricity. Researchers have successfully fabricated efficient organic-based polymer solar cells (PSCs) as a lower cost alternative. Recently, metalated conjugated polymers have shown exceptional promise as donor materials in bulk-heterojunction solar cells and are emerging as viable alternatives to the all-organic congeners currently in use. Among these metalated conjugated polymers, soluble platinum(II)-containing poly(arylene ethynylene)s of variable bandgaps (∼1.4-3.0 eV) represent attractive candidates for a cost-effective, lightweight solar-energy conversion platform. This Account highlights and discusses the recent advances of this research frontier in organometallic photovoltaics. The emerging use of low-bandgap soluble platinum-acetylide polymers in PSCs offers a new and versatile strategy to capture sunlight for efficient solar power generation. Properties of these polyplatinynes--including their chemical structures, absorption coefficients, bandgaps, charge mobilities, accessibility of triplet excitons, molecular weights, and blend film morphologies--critically influence the device performance. Our group has developed a novel strategy that allows for tuning of the optical absorption and charge transport properties as well as the PSC efficiency of these metallopolyynes. The absorbance of these materials can also be tuned to traverse the near-visible and near-infrared spectral regions. Because of the diversity of transition metals available and chemical versatility of the central spacer unit, we anticipate that this class of materials could soon lead to exciting applications in next-generation PSCs and other electronic or photonic devices. Further research in this emerging field could spur new developments in the production of renewable energy.

13.
Environ Pollut ; 282: 117011, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33823314

RESUMEN

Ubiquitous human exposure to organophosphorus tri-esters (tri-OPEs) has been reported worldwide. Previous studies investigated the feasibility of using house dust and wristbands to assess human OPE exposure. We hypothesized that these two approaches could differ in relative effectiveness in the characterization of children and adult exposure. In the participants recruited from Guangzhou, South China, urinary levels of major OPE metabolites, including diphenyl phosphate (DPHP) and bis(butoxyethyl) phosphate (BBOEP), were significantly higher in children than their mothers (median 6.6 versus 3.7 ng/mL and 0.11 versus 0.06 ng/mL, respectively). The associations of dust or wristband-associated OPEs with urinary metabolites exhibited chemical-specific patterns, which also differed between children and mothers. Significant and marginally significant associations were determined between dust concentrations of triphenyl phosphate (TPHP), tris(2-butoxyethyl) phosphate (TBOEP), trimethylphenyl phosphate (TMPP), or tris(1-chloro-2-propyl) phosphate (TCIPP) and their metabolites in children urine and between dust tris(1,3-dichloroisopropyl) phosphate (TDCIPP), TPHP or TMPP and urinary metabolites in mothers. By contrast, wristbands exhibited better efficiency of predicting internal exposure to TDCIPP. While both house dust and wristbands exhibited the potential as a convenient approach for assessing long-term OPE exposure, their feasibility requires better investigations via larger-scale studies and standardized sampling protocols.


Asunto(s)
Polvo , Retardadores de Llama , Adulto , Niño , China , Polvo/análisis , Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Ésteres/análisis , Femenino , Retardadores de Llama/análisis , Humanos , Madres , Organofosfatos/análisis , Siliconas
14.
Chemistry ; 16(10): 3240-50, 2010 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-20162650

RESUMEN

Phosphorus-bridged strained [1]ferrocenophanes [Fe{(eta-C(5)H(4))(2)P(CH(2)CMe(3))}] (2) and [Fe{(eta-C(5)H(4))(2)P(CH(2)SiMe(3))}] (3) with neopentyl and (trimethylsilyl)methyl substituents on phosphorus, respectively, have been synthesized and characterized. Photocontrolled living anionic ring-opening polymerization (ROP) of the known phosphorus-bridged [1]ferrocenophane [Fe{(eta-C(5)H(4))(2)P(CMe(3))}] (1) and the new monomers 2 and 3, initiated by Na[C(5)H(5)] in THF at 5 degrees C, yielded well-defined polyferrocenylphosphines (PFPs), [Fe{(eta-C(5)H(4))(2)PR}](n) (R=CMe(3) (4), CH(2)CMe(3) (5), and CH(2)SiMe(3) (6)), with controlled molecular weights (up to ca. 60 x 10(3) Da) and narrow molecular weight distributions. The PFPs 4-6 were characterized by multinuclear NMR spectroscopy, DSC, and by GPC analysis of the corresponding poly(ferrocenylphosphine sulfides) obtained by sulfurization of the phosphorus(III) centers. The living nature of the photocontrolled anionic ROP allowed the synthesis of well-defined all-organometallic PFP-b-PFS(F) (7a and 7b) (PFS(F)=polyferrocenylmethyl(3,3,3,-trifluoropropyl)silane) diblock copolymers through sequential monomer addition. TEM studies of the thin films of the diblock copolymer 7b showed microphase separation to form cylindrical PFS(F) domains in a PFP matrix.

15.
Adv Mater ; 32(11): e1903269, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32009268

RESUMEN

White organic light-emitting diodes (WOLEDs) are superior to traditional incandescent light bulbs and compact fluorescent lamps in terms of their merits in ensuring pure white-light emission, low-energy consumption, large-area thin-film fabrication, etc. Unfortunately, WOLEDs based on multilayered or multicomponent (red, green, and blue (RGB)) emissive layers can suffer from some remarkable disadvantages, such as intricate device fabrication and voltage-dependent emission color, etc. Single molecules, which can emit white light, can be used to replace multiple emitters, leading to a simplified fabrication process, stable and reproducible WOLEDs. Recently, the performance of WOLEDs by using single molecules is catching up with that of the state-of-the-art devices fabricated by multicomponent emitters. Therefore, an increasing attention has been paid on single white-light-emitting materials for efficient WOLEDs. In this review, different mechanisms of white-light emission from a single molecule and the performance of single-molecule-based WOLEDs are collected and expounded, hoping to light up the interesting subject on single-molecule white-light-emitting materials, which have great potential as white-light emitters for illumination and lighting applications in the world.

16.
Chem Commun (Camb) ; (24): 3574-6, 2009 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-19521612

RESUMEN

Simple single-dopant white organic light-emitting devices (WOLEDs) with optimized efficiency/color quality/brightness trade-offs are developed; the white light produced shows the best color quality ever exhibited by WOLEDs at very high brightness, and is even able to duplicate the natural sunlight source.

17.
Bioorg Med Chem ; 17(23): 7872-7, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19889546

RESUMEN

A list of diethynylfluorenes and their gold(I) derivatives have been studied for their antitumor activity as a function of their structure-activity relationships. End-capping the fluoren-9-one unit with gold(I) moieties could significantly strengthen the cytotoxic activity in vitro on three human cancer cell lines with induction of reactive oxygen species generation on Hep3B hepatocellular carcinoma cells and exhibit attractive antitumor activity from in vivo nude mice Hep3B xenograft model with limited adverse effects on vital organs including liver and kidney.


Asunto(s)
Antineoplásicos/síntesis química , Fluorenos/síntesis química , Oro/farmacología , Compuestos Organometálicos/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fluorenos/química , Fluorenos/farmacología , Oro/química , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Ratones Desnudos , Neoplasias Experimentales/tratamiento farmacológico , Compuestos Organometálicos/química , Espectrometría de Masa Bombardeada por Átomos Veloces , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad
18.
ChemSusChem ; 11(15): 2517-2528, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-29920985

RESUMEN

Three molecular photosensitizers (PSs) with carboxylic acid anchors for attachment to platinized titanium dioxide nanoparticles were studied for light-driven hydrogen production from a fully aqueous medium with ascorbic acid (AA) as the sacrificial electron donor. Two zinc(II) porphyrin (ZnP)-based PSs were used to examine the effect of panchromatic sensitization on the photocatalytic H2 generation. A dyad molecular design was used to construct a difluoro boron-dipyrromethene (bodipy)-conjugated ZnP PS (ZnP-dyad), whereas the other one featured an electron-donating diarylamino moiety (YD2-o-C8). To probe the use of the ZnP scaffold in this particular energy conversion process, an organic PS without the ZnP moiety (Bodipy-dye) was also synthesized for comparison. Ultrafast transient absorption spectroscopy was adopted to map out the energy transfer processes occurring in the dyad and to establish the bodipy-based antenna effect. In particular, the systems with YD2-o-C8 and ZnP-dyad achieved a remarkable initial activity for the production of H2 with an initial turnover frequency (TOFi ) higher than 300 h-1 under white light irradiation. The use of ZnP PSs in dye-sensitized photocatalysis for the H2 evolution reaction in this study indicated the importance of the panchromatic sensitization capability for the development of light absorbing PSs.

19.
Top Curr Chem (Cham) ; 375(5): 77, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28819798

RESUMEN

This review focuses on the recent development in the rigid-rod metallopolymers of late transition metals based on triple-bond building blocks. The synthesis, structure-property relationships and potential applications of organometallic poly(arylene ethynylene)s will be discussed in detail. These functional metal-based polymers can exhibit intriguing optical, electronic and magnetic properties. Considerable focus is placed on the design strategies towards tuning the optical bandgap and emission color (spanning almost the whole visible spectrum) of this class of metallopolymers, and the investigation of their use as active materials for light/electrical energy conversion and energy and information storage. The ongoing scientific challenges and future prospects of this research field are also highlighted.


Asunto(s)
Suministros de Energía Eléctrica , Compuestos Organometálicos/química , Polímeros/química , Elementos de Transición/química , Transferencia de Energía , Estructura Molecular , Compuestos Organometálicos/síntesis química , Relación Estructura-Actividad
20.
Org Lett ; 19(5): 1048-1051, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28185454

RESUMEN

Three metal-free molecular photosensitizers (S1-S3) featuring a starburst triarylamine donor moiety have been synthesized. They show attractive photocatalytic performance in visible light-driven H2 production from water in their platinized TiO2 composites. A remarkable H2 turnover number (TON) of 10 200 (48 h) was achieved in an S1-anchored system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA