Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
J Immunol ; 211(4): 612-625, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37405694

RESUMEN

Dendritic cells bridge the innate and adaptive immune responses by serving as sensors of infection and as the primary APCs responsible for the initiation of the T cell response against invading pathogens. The naive T cell activation requires the following three key signals to be delivered from dendritic cells: engagement of the TCR by peptide Ags bound to MHC molecules (signal 1), engagement of costimulatory molecules on both cell types (signal 2), and expression of polarizing cytokines (signal 3). Initial interactions between Borrelia burgdorferi, the causative agent of Lyme disease, and dendritic cells remain largely unexplored. To address this gap in knowledge, we cultured live B. burgdorferi with monocyte-derived dendritic cells (mo-DCs) from healthy donors to examine the bacterial immunopeptidome associated with HLA-DR. In parallel, we examined changes in the expression of key costimulatory and regulatory molecules as well as profiled the cytokines released by dendritic cells when exposed to live spirochetes. RNA-sequencing studies on B. burgdorferi-pulsed dendritic cells show a unique gene expression signature associated with B. burgdorferi stimulation that differs from stimulation with lipoteichoic acid, a TLR2 agonist. These studies revealed that exposure of mo-DCs to live B. burgdorferi drives the expression of both pro- and anti-inflammatory cytokines as well as immunoregulatory molecules (e.g., PD-L1, IDO1, Tim3). Collectively, these studies indicate that the interaction of live B. burgdorferi with mo-DCs promotes a unique mature DC phenotype that likely impacts the nature of the adaptive T cell response generated in human Lyme disease.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Humanos , Células Dendríticas , Linfocitos T/metabolismo , Citocinas/metabolismo
2.
BMC Genomics ; 25(1): 679, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978005

RESUMEN

BACKGROUND: Oxford Nanopore provides high throughput sequencing platforms able to reconstruct complete bacterial genomes with 99.95% accuracy. However, even small levels of error can obscure the phylogenetic relationships between closely related isolates. Polishing tools have been developed to correct these errors, but it is uncertain if they obtain the accuracy needed for the high-resolution source tracking of foodborne illness outbreaks. RESULTS: We tested 132 combinations of assembly and short- and long-read polishing tools to assess their accuracy for reconstructing the genome sequences of 15 highly similar Salmonella enterica serovar Newport isolates from a 2020 onion outbreak. While long-read polishing alone improved accuracy, near perfect accuracy (99.9999% accuracy or ~ 5 nucleotide errors across the 4.8 Mbp genome, excluding low confidence regions) was only obtained by pipelines that combined both long- and short-read polishing tools. Notably, medaka was a more accurate and efficient long-read polisher than Racon. Among short-read polishers, NextPolish showed the highest accuracy, but Pilon, Polypolish, and POLCA performed similarly. Among the 5 best performing pipelines, polishing with medaka followed by NextPolish was the most common combination. Importantly, the order of polishing tools mattered i.e., using less accurate tools after more accurate ones introduced errors. Indels in homopolymers and repetitive regions, where the short reads could not be uniquely mapped, remained the most challenging errors to correct. CONCLUSIONS: Short reads are still needed to correct errors in nanopore sequenced assemblies to obtain the accuracy required for source tracking investigations. Our granular assessment of the performance of the polishing pipelines allowed us to suggest best practices for tool users and areas for improvement for tool developers.


Asunto(s)
Benchmarking , Brotes de Enfermedades , Genoma Bacteriano , Nanoporos , Secuenciación de Nanoporos/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Salmonella enterica/genética , Salmonella enterica/aislamiento & purificación , Humanos , Filogenia
3.
BMC Genomics ; 24(1): 165, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016310

RESUMEN

BACKGROUND: The Salmonella enterica serovar Newport red onion outbreak of 2020 was the largest foodborne outbreak of Salmonella in over a decade. The epidemiological investigation suggested two farms as the likely source of contamination. However, single nucleotide polymorphism (SNP) analysis of the whole genome sequencing data showed that none of the Salmonella isolates collected from the farm regions were linked to the clinical isolates-preventing the use of phylogenetics in source identification. Here, we explored an alternative method for analyzing the whole genome sequencing data driven by the hypothesis that if the outbreak strain had come from the farm regions, then the clinical isolates would disproportionately contain plasmids found in isolates from the farm regions due to horizontal transfer. RESULTS: SNP analysis confirmed that the clinical isolates formed a single, nearly-clonal clade with evidence for ancestry in California going back a decade. The clinical clade had a large core genome (4,399 genes) and a large and sparsely distributed accessory genome (2,577 genes, at least 64% on plasmids). At least 20 plasmid types occurred in the clinical clade, more than were found in the literature for Salmonella Newport. A small number of plasmids, 14 from 13 clinical isolates and 17 from 8 farm isolates, were found to be highly similar (> 95% identical)-indicating they might be related by horizontal transfer. Phylogenetic analysis was unable to determine the geographic origin, isolation source, or time of transfer of the plasmids, likely due to their promiscuous and transient nature. However, our resampling analysis suggested that observing a similar number and combination of highly similar plasmids in random samples of environmental Salmonella enterica within the NCBI Pathogen Detection database was unlikely, supporting a connection between the outbreak strain and the farms implicated by the epidemiological investigation. CONCLUSION: Horizontally transferred plasmids provided evidence for a connection between clinical isolates and the farms implicated as the source of the outbreak. Our case study suggests that such analyses might add a new dimension to source tracking investigations, but highlights the need for detailed and accurate metadata, more extensive environmental sampling, and a better understanding of plasmid molecular evolution.


Asunto(s)
Salmonella enterica , Serogrupo , Cebollas/genética , Granjas , Filogenia , Plásmidos/genética , Brotes de Enfermedades
4.
J Clin Microbiol ; 61(5): e0001423, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37022157

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) infections cause substantive morbidity and mortality in neonates. Using publicly available resources from the National Center of Biotechnology Information (NCBI) and Food and Drug Administration's (FDA) GalaxyTrakr pipeline, we illustrate the dynamics of MRSA colonization and infection in neonates. Over 217 days of prospective surveillance, analyses revealed concurrent MRSA transmission chains affecting 11 of 17 MRSA-colonized patients (65%), with two clusters that demonstrated intervals of more than a month among the appearance of isolates. All MRSA infected neonates (n = 3) showed previous colonization with the infecting strain. GalaxyTrakr clustering of the NICU strains, in the context of 21,521 international isolates deposited in NCBI's Pathogen Detection Resource, revealed NICU isolates to be distinct from adult MRSA strains seen locally and internationally. Clustering of the NICU strains within an international context enhanced the resolution of strain clusters and supported the rule-out of suspected, local transmission events within the NICU. Analyses also identified sequence type 1535 isolates, emergent in the Middle East, carrying a unique SCCmec with fusC and aac(6')-Ie/aph(2'')-1a that provided a multidrug-resistant phenotype. NICU genomic pathogen surveillance, leveraging public repositories and outbreak detection tools, supports rapid identification of cryptic MRSA clusters, and can inform infection prevention interventions for this vulnerable patient population. Results demonstrate that sporadic infections in the NICU may be indicative of hidden chains of asymptomatic transmission best identified with sequenced-based approaches.


Asunto(s)
Infección Hospitalaria , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Recién Nacido , Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/epidemiología , Unidades de Cuidado Intensivo Neonatal , Estudios Prospectivos , Control de Infecciones/métodos , Brotes de Enfermedades/prevención & control , Genómica , Infección Hospitalaria/epidemiología
5.
Genomics ; 112(1): 528-544, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30974149

RESUMEN

A total of 91 draft genome sequences were used to analyze isolates of Salmonella enterica serovar Enteritidis obtained from feral mice caught on poultry farms in Pennsylvania. One objective was to find mutations disrupting open reading frames (ORFs) and another was to determine if ORF-disruptive mutations were present in isolates obtained from other sources. A total of 83 mice were obtained between 1995-1998. Isolates separated into two genomic clades and 12 subgroups due to 742 mutations. Nineteen ORF-disruptive mutations were found, and in addition, bigA had exceptional heterogeneity requiring additional evaluation. The TRAMS algorithm detected only 6 ORF disruptions. The sefD mutation was the most frequently encountered mutation and it was prevalent in human, poultry, environmental and mouse isolates. These results confirm previous assessments of the mouse as a rich source of Salmonella enterica serovar Enteritidis that varies in genotype and phenotype.


Asunto(s)
Mutación , Salmonella enteritidis/genética , Algoritmos , Animales , Granjas , Genoma Bacteriano , Mutación INDEL , Ratones , Repeticiones de Minisatélite , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple , Aves de Corral , Salmonella enteritidis/clasificación , Salmonella enteritidis/aislamiento & purificación , Secuenciación Completa del Genoma
6.
Water Sci Technol ; 84(5): 1270-1279, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34534122

RESUMEN

Peracetic acid (PAA) stands out as a safe and environmental-friendly oxidant and disinfectant which has been effectively used in wastewater treatment. Chemical oxygen demand (COD) is a very popular analysis in wastewater treatment; however, the interference of residual PAA on the COD measurement is still unknown. In this context, this study investigated the implications of applying the COD analysis in PAA-based treatment. Each 1 mg·L-1 of PAA increased the COD concentration around 13.5 mg O2·L-1. Residual PAA and hydrogen peroxide (H2O2) were efficiently neutralized by sodium metabisulfite (SMBS) at the optimal SMBS/PAA ratio of 10.2:1 in a wide pH range (5 to 9). The effect of PAA addition on the COD concentration was evaluated in different water matrices (potassium hydrogen phthalate and wastewater solutions). The COD results with the SMBS addition at optimal SMBS/PAA ratio were lower than the ones without it. It may happen due to the neutralization of residual H2O2/PAA and the complexity of the water matrices which can interfere in the COD results. This study discussed the impact of the residual H2O2/PAA neutralization before the COD analysis, and this investigation can be used as a practical guideline for the correct COD measurement in PAA-based treatment.


Asunto(s)
Ácido Peracético , Purificación del Agua , Análisis de la Demanda Biológica de Oxígeno , Desinfección , Peróxido de Hidrógeno/análisis
7.
Infect Immun ; 88(4)2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32014897

RESUMEN

Nontyphoidal Salmonella species are globally disseminated pathogens and are the predominant cause of gastroenteritis. The pathogenesis of salmonellosis has been extensively studied using in vivo murine models and cell lines, typically challenged with Salmonella enterica serovar Typhimurium. Although S. enterica serovars Enteritidis and Typhimurium are responsible for most of the human infections reported to the Centers for Disease Control and Prevention (CDC), several other serovars also contribute to clinical cases of salmonellosis. Despite their epidemiological importance, little is known about their infection phenotypes. Here, we report the virulence characteristics and genomes of 10 atypical S. enterica serovars linked to multistate foodborne outbreaks in the United States. We show that the murine RAW 264.7 macrophage model of infection is unsuitable for inferring human-relevant differences in nontyphoidal Salmonella infections, whereas differentiated human THP-1 macrophages allowed these isolates to be further characterized in a more human-relevant context.


Asunto(s)
Macrófagos/inmunología , Macrófagos/microbiología , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Salmonella enterica/crecimiento & desarrollo , Salmonella enterica/inmunología , Animales , Humanos , Ratones , Modelos Biológicos , Células RAW 264.7 , Células THP-1 , Virulencia
8.
J Bacteriol ; 202(1)2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31611289

RESUMEN

Escherichia coli O157:H7 is a foodborne pathogen implicated in various multistate outbreaks. It encodes Shiga toxin on a prophage, and Shiga toxin production is linked to phage induction. An E. coli strain, designated 0.1229, that amplified Stx2a production when cocultured with E. coli O157:H7 strain PA2 was identified. Growth of PA2 in 0.1229 cell-free supernatants had a similar effect, even when supernatants were heated to 100°C for 10 min, but not after treatment with proteinase K. The secreted molecule was shown to use TolC for export and the TonB system for import. The genes sufficient for production of this molecule were localized to a 5.2-kb region of a 12.8-kb plasmid. This region was annotated, identifying hypothetical proteins, a predicted ABC transporter, and a cupin superfamily protein. These genes were identified and shown to be functional in two other E. coli strains, and bioinformatic analyses identified related gene clusters in similar and distinct bacterial species. These data collectively suggest that E. coli 0.1229 and other E. coli strains produce a microcin that induces the SOS response in target bacteria. Besides adding to the limited number of microcins known to be produced by E. coli, this study provides an additional mechanism by which stx2a expression is increased in response to the gut microflora.IMPORTANCE How the gut microflora influences the progression of bacterial infections is only beginning to be understood. Antibiotics are counterindicated for E. coli O157:H7 infections, limiting treatment options. An increased understanding of how the gut microflora directs O157:H7 virulence gene expression may lead to additional treatment options. This work identified E. coli strains that enhance the production of Shiga toxin by O157:H7 through the secretion of a proposed microcin. Microcins are natural antimicrobial peptides that target specific species, can act as alternatives to antibiotics, and mediate microbial competition. This work demonstrates another mechanism by which non-O157 E. coli strains may increase Shiga toxin production and adds to our understanding of microcins, a group of antimicrobials less well understood than colicins.


Asunto(s)
Bacteriocinas/farmacología , Escherichia coli O157/patogenicidad , Toxina Shiga II/biosíntesis , Biología Computacional , Escherichia coli O157/genética , Familia de Multigenes , Sistemas de Lectura Abierta , Respuesta SOS en Genética , Toxina Shiga II/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-30530605

RESUMEN

New Delhi metallo-beta-lactamases (NDMs) are an uncommon but emerging cause of carbapenem resistance in the United States. Genomic factors promoting their domestic spread remain poorly characterized. A prospective genomic surveillance program among Boston-area hospitals identified multiple new occurrences of NDM-carrying strains of Escherichia coli and Enterobacter cloacae complex in inpatient and outpatient settings, representing the first occurrences of NDM-mediated resistance since initiating genomic surveillance in 2011. Cases included domestic patients with no international exposures. PacBio sequencing of isolates identified strain characteristics, resistance genes, and the complement of mobile vectors mediating spread. Analyses revealed a common 3,114-bp region containing the blaNDM gene, with carriage of this conserved region among unique strains by diverse transposon and plasmid backbones. Functional studies revealed a broad capacity for blaNDM transmission by conjugation, transposition, and complex interplasmid recombination events. NDMs represent a rapidly spreading form of drug resistance that can occur in inpatient and outpatient settings and in patients without international exposures. In contrast to Tn4401-based spread of Klebsiella pneumoniae carbapenemases (KPCs), diverse transposable elements mobilize NDM enzymes, commonly with other resistance genes, enabling naive strains to acquire multi- and extensively drug-resistant profiles with single transposition or plasmid conjugation events. Genomic surveillance provides effective means to rapidly identify these gene-level drivers of resistance and mobilization in order to inform clinical decisions to prevent further spread.


Asunto(s)
Antibacterianos/farmacología , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Carbapenémicos/farmacología , Enterobacter cloacae/efectos de los fármacos , Escherichia coli/efectos de los fármacos , beta-Lactamasas/genética , Boston , Conjugación Genética/genética , Farmacorresistencia Bacteriana/genética , Enterobacter cloacae/genética , Enterobacter cloacae/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Transferencia de Gen Horizontal/genética , Humanos , Tipificación de Secuencias Multilocus , Polimorfismo de Nucleótido Simple/genética
10.
Microbiology (Reading) ; 165(3): 270-286, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30672732

RESUMEN

Non-typhoidal Salmonella is a leading cause of outbreak and sporadic-associated foodborne illnesses in the United States. These infections have been associated with a range of foods, including retail meats. Traditionally, pulsed-field gel electrophoresis (PFGE) and antibiotic susceptibility testing (AST) have been used to facilitate public health investigations of Salmonella infections. However, whole-genome sequencing (WGS) has emerged as an alternative tool that can be routinely implemented. To assess its potential in enhancing integrated surveillance in Pennsylvania, USA, WGS was used to directly compare the genetic characteristics of 7 retail meat and 43 clinical historic Salmonella isolates, subdivided into 3 subsets based on PFGE and AST results, to retrospectively resolve their genetic relatedness and identify antimicrobial resistance (AMR) determinants. Single nucleotide polymorphism (SNP) analyses revealed that the retail meat isolates within S. Heidelberg, S. Typhimurium var. O5- subset 1 and S. Typhimurium var. O5- subset 2 were separated from each primary PFGE pattern-matched clinical isolate by 6-12, 41-96 and 21-81 SNPs, respectively. Fifteen resistance genes were identified across all isolates, including fosA7, a gene only recently found in a limited number of Salmonella and a ≥95 % phenotype to genotype correlation was observed for all tested antimicrobials. Moreover, AMR was primarily plasmid-mediated in S. Heidelberg and S. Typhimurium var. O5- subset 2, whereas AMR was chromosomally carried in S. Typhimurium var. O5- subset 1. Similar plasmids were identified in both the retail meat and clinical isolates. Collectively, these data highlight the utility of WGS in retrospective analyses and enhancing integrated surveillance for Salmonella from multiple sources.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Genoma Bacteriano/genética , Carne/microbiología , Infecciones por Salmonella/microbiología , Salmonella/genética , Salmonella/aislamiento & purificación , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Electroforesis en Gel de Campo Pulsado , Microbiología de Alimentos , Humanos , Pruebas de Sensibilidad Microbiana , Filogenia , Plásmidos/genética , Polimorfismo de Nucleótido Simple/genética , Aves de Corral , Estudios Retrospectivos , Salmonella/clasificación , Salmonella/efectos de los fármacos , Porcinos
11.
BMC Genomics ; 19(1): 708, 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30253738

RESUMEN

BACKGROUND: Listeria monocytogenes is a widespread foodborne pathogen that can cause listeriosis, a potentially fatal infection. L. monocytogenes is subdivided into four phylogenetic lineages, with the highest incidence of listeriosis occurring within lineage I followed by lineage II. Strains of L. monocytogenes differ in their phenotypic characteristics, including virulence. However, the genetic bases for these observed differences are not well understood, and current efforts to monitor L. monocytogenes in food consider all strains to be equally virulent. We use a comparative genomics approach to identify genes and single nucleotide polymorphisms (SNPs) in 174 clinical and food isolates of L. monocytogenes that potentially contribute to virulence or the capacity to adapt to food environments. RESULTS: No SNPs are significantly associated with food or clinical isolates. No genes are significantly associated with food or clinical isolates from lineage I, but eight genes consisting of multiple homologues are associated with lineage II food isolates. These include three genes which encode hypothetical proteins, the cadmium resistance genes cadA and cadC, the multi-drug resistance gene ebrB, a quaternary ammonium compound resistance gene qac, and a regulatory gene. All eight genes are plasmid-borne, and most closed L. monocytogenes plasmids carry at least five of the genes (24/27). In addition, plasmids are more frequently associated with lineage II food isolates than with lineage II clinical isolates. CONCLUSIONS: We identify eight genes that are significantly associated with food isolates in lineage II. Interestingly, the eight genes are virtually absent in lineage II outbreak isolates, are composed of homologues which show a nonrandom distribution among lineage I serotypes, and the sequences are highly conserved across 27 closed Listeria plasmids. The functions of these genes should be explored further and will contribute to our understanding of how L. monocytogenes adapts to the host and food environments. Moreover, these genes may also be useful as markers for risk assessment models of either pathogenicity or the ability to proliferate in food and the food processing environment.


Asunto(s)
Microbiología de Alimentos , Listeria monocytogenes/genética , Brotes de Enfermedades , Genes Bacterianos , Humanos , Listeria monocytogenes/clasificación , Listeria monocytogenes/aislamiento & purificación , Listeria monocytogenes/patogenicidad , Listeriosis/epidemiología , Listeriosis/microbiología , Polimorfismo de Nucleótido Simple , Serogrupo , Estrés Fisiológico/genética , Virulencia/genética
12.
J Antimicrob Chemother ; 73(12): 3254-3258, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30272180

RESUMEN

Objectives: To sequence the genomes and determine the genetic mechanisms for linezolid resistance identified in three strains of Enterococcus isolated from cattle and swine caecal contents as part of the US National Antimicrobial Resistance Monitoring System (NARMS) surveillance programme. Methods: Broth microdilution was used for in vitro antimicrobial susceptibility testing to assess linezolid resistance. Resistance mechanisms and plasmid types were identified from data generated by WGS on Illumina® and PacBio® platforms. Conjugation experiments were performed to determine whether identified mechanisms were transmissible. Results: Linezolid resistance plasmids containing optrA were identified in two Enterococcus faecalis isolates and one Enterococcus faecium. The E. faecium isolate also carried the linezolid resistance gene cfr on the same plasmid as optrA. The linezolid resistance plasmids had various combinations of additional resistance genes conferring resistance to phenicols (fexA), aminoglycosides [spc and aph(3')-III] and macrolides [erm(A) and erm(B)]. One of the plasmids was confirmed to be transmissible by conjugation, resulting in linezolid resistance in the transconjugant. Conclusions: To the best of our knowledge, this is the first identification of linezolid resistance in the USA in bacteria isolated from food animals. The oxazolidinone class of antibiotics is not used in food animals in the USA, but the genes responsible for resistance were identified on plasmids with other resistance markers, indicating that there may be co-selection for these plasmids due to the use of different antimicrobials. The transmissibility of one of the plasmids demonstrated the potential for linezolid resistance to spread horizontally. Additional surveillance is necessary to determine whether similar plasmids are present in human strains of Enterococcus.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Enterococcus faecalis/genética , Enterococcus faecium/genética , Productos de la Carne/microbiología , Plásmidos/genética , Animales , Técnicas de Tipificación Bacteriana , Bovinos/microbiología , ADN Bacteriano/genética , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/aislamiento & purificación , Enterococcus faecium/efectos de los fármacos , Enterococcus faecium/aislamiento & purificación , Genoma Bacteriano , Linezolid/farmacología , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Aves de Corral/microbiología , ARN Ribosómico 23S/genética , Porcinos/microbiología , Estados Unidos
13.
Food Microbiol ; 76: 553-563, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30166187

RESUMEN

Using naturally-occurring bacterial strains as positive controls in testing protocols is typically feared due to the risk of cross-contaminating samples. We have developed a collection of strains which express Green Fluorescent Protein (GFP) at high-level, permitting rapid screening of the following species on selective or non-selective plates: Escherichia coli O157:H7, Shigella sonnei, S. flexneri, Salmonella enterica subsp. Enterica serovar Gaminera, S. Mbandaka, S. Tennesse, S. Minnesota, S. Senftenberg and S. Typhimurium. These new strains fluoresce when irradiated with UV light and maintain this phenotype in absence of antibiotic selection. Recombinants were phenotypically equivalent to the parent strain, except for S. Tennessee Sal66 that appeared Lac- on Xylose Lysine Deoxycholate (XLD) agar plates and Lac+ on Mac Conkey and Hektoen Enteric agar plates. Analysis of closed whole genome sequences revealed that Sal66 had lost one lactose operon; slower rates of lactose metabolism may affect lactose fermentation on XLD agar. These fluorescent enteric control strains were challenging to develop and should provide an easy and effective means of identifying cross-contamination.


Asunto(s)
Enterobacteriaceae/genética , Inocuidad de los Alimentos , Proteínas Fluorescentes Verdes/metabolismo , Enterobacteriaceae/clasificación , Enterobacteriaceae/metabolismo , Enterobacteriaceae/efectos de la radiación , Análisis de los Alimentos , Irradiación de Alimentos , Proteínas Fluorescentes Verdes/genética , Lactosa/metabolismo , Operón , Rayos Ultravioleta
14.
Foodborne Pathog Dis ; 15(6): 361-371, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29620958

RESUMEN

Multidrug-resistant (MDR) plasmids play an important role in disseminating antimicrobial resistance genes. To elucidate the antimicrobial resistance gene compositions in A/C incompatibility complex (IncA/C) plasmids carried by animal-derived MDR Salmonella Newport, and to investigate the spread mechanism of IncA/C plasmids, this study characterizes the complete nucleotide sequences of IncA/C plasmids by comparative analysis. Complete nucleotide sequencing of plasmids and chromosomes of six MDR Salmonella Newport strains was performed using PacBio RSII. Open reading frames were assigned using prokaryotic genome annotation pipeline (PGAP). To understand genomic diversity and evolutionary relationships among Salmonella Newport IncA/C plasmids, we included three complete IncA/C plasmid sequences with similar backbones from Salmonella Newport and Escherichia coli: pSN254, pAM04528, and peH4H, and additional 200 draft chromosomes. With the exception of canine isolate CVM22462, which contained an additional IncI1 plasmid, each of the six MDR Salmonella Newport strains contained only the IncA/C plasmid. These IncA/C plasmids (including references) ranged in size from 80.1 (pCVM21538) to 176.5 kb (pSN254) and carried various resistance genes. Resistance genes floR, tetA, tetR, strA, strB, sul, and mer were identified in all IncA/C plasmids. Additionally, blaCMY-2 and sugE were present in all IncA/C plasmids, excepting pCVM21538. Plasmid pCVM22462 was capable of being transferred by conjugation. The IncI1 plasmid pCVM22462b in CVM22462 carried blaCMY-2 and sugE. Our data showed that MDR Salmonella Newport strains carrying similar IncA/C plasmids clustered together in the phylogenetic tree using chromosome sequences and the IncA/C plasmids from animal-derived Salmonella Newport contained diverse resistance genes. In the current study, we analyzed genomic diversities and phylogenetic relationships among MDR Salmonella Newport using complete plasmids and chromosome sequences and provided possible spread mechanism of IncA/C plasmids in Salmonella Newport Lineage II.


Asunto(s)
Enfermedades de los Bovinos/microbiología , Pollos/microbiología , Enfermedades de los Perros/microbiología , Enfermedades de las Aves de Corral/microbiología , Carne Roja/microbiología , Salmonelosis Animal/microbiología , Salmonella/genética , Animales , Bovinos , Perros , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Filogenia , Plásmidos/genética , Salmonella/efectos de los fármacos , Salmonella/aislamiento & purificación , Análisis de Secuencia de ADN/veterinaria
16.
Artículo en Inglés | MEDLINE | ID: mdl-28483962

RESUMEN

We sequenced the genomes of 10 Salmonella enterica serovar Infantis isolates containing blaCTX-M-65 obtained from chicken, cattle, and human sources collected between 2012 and 2015 in the United States through routine National Antimicrobial Resistance Monitoring System (NARMS) surveillance and product sampling programs. We also completely assembled the plasmids from four of the isolates. All isolates had a D87Y mutation in the gyrA gene and harbored between 7 and 10 resistance genes [aph(4)-Ia, aac(3)-IVa, aph(3')-Ic, blaCTX-M-65, fosA3, floR, dfrA14, sul1, tetA, aadA1] located in two distinct sites of a megaplasmid (∼316 to 323 kb) similar to that described in a blaCTX-M-65-positive S Infantis isolate from a patient in Italy. High-quality single nucleotide polymorphism (hqSNP) analysis revealed that all U.S. isolates were closely related, separated by only 1 to 38 pairwise high-quality SNPs, indicating a high likelihood that strains from humans, chickens, and cattle recently evolved from a common ancestor. The U.S. isolates were genetically similar to the blaCTX-M-65-positive S Infantis isolate from Italy, with a separation of 34 to 47 SNPs. This is the first report of the blaCTX-M-65 gene and the pESI (plasmid for emerging S Infantis)-like megaplasmid from S Infantis in the United States, and it illustrates the importance of applying a global One Health human and animal perspective to combat antimicrobial resistance.


Asunto(s)
Antibacterianos/farmacología , Salmonella enterica/efectos de los fármacos , beta-Lactamasas/metabolismo , Animales , Bovinos , Pollos , Microbiología de Alimentos , Humanos , Pruebas de Sensibilidad Microbiana , Polimorfismo de Nucleótido Simple/genética , Salmonella enterica/enzimología , Estados Unidos , beta-Lactamasas/genética
17.
J Infect Dis ; 213(4): 502-8, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25995194

RESUMEN

BACKGROUND: Using a novel combination of whole-genome sequencing (WGS) analysis and geographic metadata, we traced the origins of Salmonella Bareilly isolates collected in 2012 during a widespread food-borne outbreak in the United States associated with scraped tuna imported from India. METHODS: Using next-generation sequencing, we sequenced the complete genome of 100 Salmonella Bareilly isolates obtained from patients who consumed contaminated product, from natural sources, and from unrelated historically and geographically disparate foods. Pathogen genomes were linked to geography by projecting the phylogeny on a virtual globe and produced a transmission network. RESULTS: Phylogenetic analysis of WGS data revealed a common origin for outbreak strains, indicating that patients in Maryland and New York were infected from sources originating at a facility in India. CONCLUSIONS: These data represent the first report fully integrating WGS analysis with geographic mapping and a novel use of transmission networks. Results showed that WGS vastly improves our ability to delimit the scope and source of bacterial food-borne contamination events. Furthermore, these findings reinforce the extraordinary utility that WGS brings to global outbreak investigation as a greatly enhanced approach to protecting the human food supply chain as well as public health in general.


Asunto(s)
Brotes de Enfermedades , Enfermedades Transmitidas por los Alimentos/epidemiología , Infecciones por Salmonella/epidemiología , Salmonella enterica/clasificación , Salmonella enterica/aislamiento & purificación , Animales , Enfermedades Transmitidas por los Alimentos/microbiología , Genoma Bacteriano , Genotipo , Humanos , India , Epidemiología Molecular , Tipificación Molecular , Filogeografía , Infecciones por Salmonella/microbiología , Salmonella enterica/genética , Análisis de Secuencia de ADN , Atún/microbiología , Estados Unidos/epidemiología
19.
Appl Environ Microbiol ; 82(21): 6367-6377, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27542930

RESUMEN

Most Shiga toxin-producing Escherichia coli (STEC) strains associated with severe disease, such as hemolytic-uremic syndrome (HUS), carry large enterohemolysin-encoding (ehxA) plasmids, e.g., pO157 and pO103, that contribute to STEC clinical manifestations. Six ehxA subtypes (A through F) exist that phylogenetically cluster into eae-positive (B, C, F), a mix of eae-positive (E) and eae-negative (A), and a third, more distantly related, cluster of eae-negative (D) STEC strains. While subtype B, C, and F plasmids share a number of virulence traits that are distinct from those of subtype A, sequence data have not been available for subtype D and E plasmids. Here, we determined and compared the genetic composition of four subtype D and two subtype E plasmids to establish their evolutionary relatedness among ehxA subtypes and define their potential role in pathogenicity. We found that subtype D strains carry one exceptionally large plasmid (>200 kbp) that carries a variety of virulence genes that are associated with enterotoxigenic and enterohemorrhagic E. coli, which, quite possibly, enables these strains to cause disease despite being food isolates. Our data offer further support for the hypothesis that this subtype D plasmid represents a novel virulence plasmid, sharing very few genetic features with other plasmids; we conclude that these plasmids have evolved from a different evolutionary lineage than the plasmids carrying the other ehxA subtypes. In contrast, the 50-kbp plasmids of subtype E (pO145), although isolated from HUS outbreak strains, carried only few virulence-associated determinants, suggesting that the clinical presentation of subtype E strains is largely a result of chromosomally encoded virulence factors. IMPORTANCE: Bacterial plasmids are known to be key agents of change in microbial populations, promoting the dissemination of various traits, such as drug resistance and virulence. This study determined the genetic makeup of virulence plasmids from rare enterohemolysin subtype D and E Shiga toxin-producing E. coli strains. We demonstrated that ehxA subtype D plasmids represent a novel E. coli virulence plasmid, and although subtype D plasmids were derived from nonclinical isolates, they encoded a variety of virulence determinants that are associated with pathogenic E. coli In contrast, subtype E plasmids, isolated from strains recovered from severely ill patients, carry only a few virulence determinants. The results of this study reemphasize the plasticity and vast diversity among E. coli plasmids. This work demonstrates that, although E. coli strains of certain serogroups may not be frequently associated with disease, they should not be underestimated in protecting human health and food safety.


Asunto(s)
Proteínas de Escherichia coli/genética , Evolución Molecular , Proteínas Hemolisinas/genética , Plásmidos , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/patogenicidad , Adhesinas Bacterianas/genética , Humanos , Filogenia , Análisis de Secuencia de ADN , Toxinas Shiga/genética , Factores de Virulencia/genética
20.
J Antimicrob Chemother ; 69(10): 2644-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24908046

RESUMEN

OBJECTIVES: To examine the distribution of all genes known to be responsible for resistance to quaternary ammonium compounds (QACs), and their association with resistance to QACs and other antimicrobials, in Escherichia coli recovered from retail meats. METHODS: A total of 570 strains of E. coli isolated from US retail meats in 2006 were screened for the presence of 10 QAC resistance genes [qacE, qacEΔ1, qacF, qacG, emrE, sugE(c), sugE(p), mdfA and ydgE/ydgF]. The MICs of six common disinfectants were determined using an agar dilution method. Possible associations between the presence of the gene and bacterial resistance to QACs and antimicrobials were investigated. RESULTS: emrE, sugE(c), mdfA and ydgE/ydgF were commonly present (77.2%-100%) in the E. coli isolates, but qac and sugE(p) were less prevalent (0.4%-22.3%). emrE-mdfA-sugE(c)-ydgE/F was the most common QAC resistance gene profile. A significant association was found between antimicrobial resistance and the presence of sugE(p) and qacEΔ1 (P < 0.05). Antimicrobial-resistant E. coli isolates tended to contain more diverse combinations of disinfectant resistance genes than susceptible ones. All isolates showed reduced susceptibility to five of six disinfectants compared with the control strains. Higher MICs were generally associated with the presence of qac and sugE(p) genes. CONCLUSIONS: The QAC resistance genes were commonly present among E. coli isolated from retail meats, and the qac and sugE(p) genes were highly associated with multidrug resistance phenotypes. Using QACs in the food industry may not be as effective as expected and could provide selection pressure for strains with acquired resistance to other antimicrobials.


Asunto(s)
Desinfectantes/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Microbiología de Alimentos , Carne/microbiología , Animales , Antibacterianos/farmacología , Escherichia coli/aislamiento & purificación , Genes Bacterianos , Humanos , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA