Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
N Engl J Med ; 387(5): 421-432, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35921451

RESUMEN

BACKGROUND: Aggregated α-synuclein plays an important role in the pathogenesis of Parkinson's disease. The monoclonal antibody prasinezumab, directed at aggregated α-synuclein, is being studied for its effect on Parkinson's disease. METHODS: In this phase 2 trial, we randomly assigned participants with early-stage Parkinson's disease in a 1:1:1 ratio to receive intravenous placebo or prasinezumab at a dose of 1500 mg or 4500 mg every 4 weeks for 52 weeks. The primary end point was the change from baseline to week 52 in the sum of scores on parts I, II, and III of the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS; range, 0 to 236, with higher scores indicating greater impairment). Secondary end points included the dopamine transporter levels in the putamen of the hemisphere ipsilateral to the clinically more affected side of the body, as measured by 123I-ioflupane single-photon-emission computed tomography (SPECT). RESULTS: A total of 316 participants were enrolled; 105 were assigned to receive placebo, 105 to receive 1500 mg of prasinezumab, and 106 to receive 4500 mg of prasinezumab. The baseline mean MDS-UPDRS scores were 32.0 in the placebo group, 31.5 in the 1500-mg group, and 30.8 in the 4500-mg group, and mean (±SE) changes from baseline to 52 weeks were 9.4±1.2 in the placebo group, 7.4±1.2 in the 1500-mg group (difference vs. placebo, -2.0; 80% confidence interval [CI], -4.2 to 0.2; P = 0.24), and 8.8±1.2 in the 4500-mg group (difference vs. placebo, -0.6; 80% CI, -2.8 to 1.6; P = 0.72). There was no substantial difference between the active-treatment groups and the placebo group in dopamine transporter levels on SPECT. The results for most clinical secondary end points were similar in the active-treatment groups and the placebo group. Serious adverse events occurred in 6.7% of the participants in the 1500-mg group and in 7.5% of those in the 4500-mg group; infusion reactions occurred in 19.0% and 34.0%, respectively. CONCLUSIONS: Prasinezumab therapy had no meaningful effect on global or imaging measures of Parkinson's disease progression as compared with placebo and was associated with infusion reactions. (Funded by F. Hoffmann-La Roche and Prothena Biosciences; PASADENA ClinicalTrials.gov number, NCT03100149.).


Asunto(s)
Anticuerpos Monoclonales Humanizados , Antiparkinsonianos , Enfermedad de Parkinson , alfa-Sinucleína , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antiparkinsonianos/uso terapéutico , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/uso terapéutico , Método Doble Ciego , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Resultado del Tratamiento , alfa-Sinucleína/antagonistas & inhibidores
2.
Neuroimage ; 262: 119555, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35963506

RESUMEN

Regional homogeneity (ReHo) is a measure of local functional brain connectivity that has been reported to be altered in a wide range of neuropsychiatric disorders. Computed from brain resting-state functional MRI time series, ReHo is also sensitive to fluctuations in cerebral blood flow (CBF) that in turn may be influenced by cerebrovascular health. We accessed cerebrovascular health with Framingham cardiovascular risk score (FCVRS). We hypothesize that ReHo signal may be influenced by regional CBF; and that these associations can be summarized as FCVRS→CBF→ReHo. We used three independent samples to test this hypothesis. A test-retest sample of N = 30 healthy volunteers was used for test-retest evaluation of CBF effects on ReHo. Amish Connectome Project (ACP) sample (N = 204, healthy individuals) was used to evaluate association between FCVRS and ReHo and testing if the association diminishes given CBF. The UKBB sample (N = 6,285, healthy participants) was used to replicate the effects of FCVRS on ReHo. We observed strong CBF→ReHo links (p<2.5 × 10-3) using a three-point longitudinal sample. In ACP sample, marginal and partial correlations analyses demonstrated that both CBF and FCVRS were significantly correlated with the whole-brain average (p<10-6) and regional ReHo values, with the strongest correlations observed in frontal, parietal, and temporal areas. Yet, the association between ReHo and FCVRS became insignificant once the effect of CBF was accounted for. In contrast, CBF→ReHo remained significantly linked after adjusting for FCVRS and demographic covariates (p<10-6). Analysis in N = 6,285 replicated the FCVRS→ReHo effect (p = 2.7 × 10-27). In summary, ReHo alterations in health and neuropsychiatric illnesses may be partially driven by region-specific variability in CBF, which is, in turn, influenced by cardiovascular factors.


Asunto(s)
Enfermedades Cardiovasculares , Conectoma , Encéfalo/fisiología , Enfermedades Cardiovasculares/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Imagen por Resonancia Magnética , Factores de Riesgo
3.
Hum Brain Mapp ; 42(9): 2766-2777, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33666305

RESUMEN

Dopamine (DA) mediated brain activity is intimately linked to reward-driven cerebral responses, while aberrant reward processing has been implicated in several psychiatric disorders. fMRI has been a valuable tool in understanding the mechanism by which DA modulators alter reward-driven responses and how they may exert their therapeutic effect. However, the potential effects of a pharmacological compound on aspects of neurovascular coupling may cloud the interpretability of the BOLD contrast. Here, we assess the effects of risperidone on reward driven BOLD signals produced by reward anticipation and outcome, while attempting to control for potential drug effects on regional cerebral blood flow (CBF) and cerebrovascular reactivity (CVR). Healthy male volunteers (n = 21) each received a single oral dose of either 0.5 mg, 2 mg of risperidone or placebo in a double-blind, placebo-controlled, randomised, three-period cross-over study design. Participants underwent fMRI scanning while performing the widely used Monetary Incentive Delay (MID) task to assess drug impact on reward function. Measures of CBF (Arterial Spin Labelling) and breath-hold challenge induced BOLD signal changes (as a proxy for CVR) were also acquired and included as covariates. Risperidone produced divergent, dose-dependent effects on separate phases of reward processing, even after controlling for potential nonneuronal influences on the BOLD signal. These data suggest the D2 antagonist risperidone has a wide-ranging influence on DA-mediated reward function independent of nonneuronal factors. We also illustrate that assessment of potential vascular confounds on the BOLD signal may be advantageous when investigating CNS drug action and advocate for the inclusion of these additional measures into future study designs.


Asunto(s)
Anticipación Psicológica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Contencion de la Respiración , Circulación Cerebrovascular/efectos de los fármacos , Antagonistas de los Receptores de Dopamina D2/farmacología , Neuroimagen Funcional , Desempeño Psicomotor/efectos de los fármacos , Recompensa , Risperidona/farmacología , Adulto , Encéfalo/diagnóstico por imagen , Estudios Cruzados , Antagonistas de los Receptores de Dopamina D2/administración & dosificación , Método Doble Ciego , Humanos , Imagen por Resonancia Magnética , Masculino , Risperidona/administración & dosificación , Adulto Joven
4.
Hum Brain Mapp ; 42(3): 555-566, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33079453

RESUMEN

Recent studies have shown that drug-induced spatial alteration patterns in resting state functional activity as measured using magnetic resonance imaging (rsfMRI) are associated with the distribution of specific receptor systems targeted by respective compounds. Based on this approach, we introduce a toolbox (JuSpace) allowing for cross-modal correlation of MRI-based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, and GABAergic (gamma-aminobutric acid) neurotransmission. We apply JuSpace to two datasets covering Parkinson's disease patients (PD) and risperidone-induced changes in rsfMRI and cerebral blood flow (CBF). Consistently with the predominant neurodegeneration of dopaminergic and serotonergic system in PD, we find significant spatial associations between rsfMRI activity alterations in PD and dopaminergic (D2) and serotonergic systems (5-HT1b). Risperidone induced CBF alterations were correlated with its main targets in serotonergic and dopaminergic systems. JuSpace provides a biologically meaningful framework for linking neuroimaging to underlying neurotransmitter information.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen/métodos , Neurotransmisores/farmacología , Tomografía de Emisión de Positrones , Receptores de Neurotransmisores , Transmisión Sináptica , Tomografía Computarizada de Emisión de Fotón Único , Circulación Cerebrovascular/efectos de los fármacos , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Receptores de Neurotransmisores/efectos de los fármacos , Transmisión Sináptica/fisiología
5.
Cerebellum ; 18(2): 212-224, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30298443

RESUMEN

Levodopa has been the mainstay of symptomatic therapy for Parkinson's disease (PD) for the last five decades. However, it is associated with the development of motor fluctuations and dyskinesia, in particular after several years of treatment. The aim of this study was to shed light on the acute brain functional reorganization in response to a single levodopa dose. Functional magnetic resonance imaging (fMRI) was performed after an overnight withdrawal of dopaminergic treatment and 1 h after a single dose of 250 mg levodopa in a group of 24 PD patients. Eigenvector centrality was calculated in both treatment states using resting-state fMRI. This offers a new data-driven and parameter-free approach, similar to Google's PageRank algorithm, revealing brain connectivity alterations due to the effect of levodopa treatment. In all PD patients, levodopa treatment led to an improvement of clinical symptoms as measured with the Unified Parkinson's Disease Rating Scale motor score (UPDRS-III). This therapeutic effect was accompanied with a major connectivity increase between cerebellar brain regions and subcortical areas of the motor system such as the thalamus, putamen, globus pallidus, and brainstem. The degree of interconnectedness of cerebellar regions correlated with the improvement of clinical symptoms due to the administration of levodopa. We observed significant functional cerebellar connectivity reorganization immediately after a single levodopa dose in PD patients. Enhanced general connectivity (eigenvector centrality) was associated with better motor performance as assessed by UPDRS-III score. This underlines the importance of considering cerebellar networks as therapeutic targets in PD.


Asunto(s)
Antiparkinsonianos/uso terapéutico , Cerebelo/efectos de los fármacos , Cerebelo/fisiopatología , Levodopa/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/fisiopatología , Adulto , Anciano , Mapeo Encefálico/métodos , Cerebelo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiopatología , Enfermedad de Parkinson/diagnóstico por imagen , Descanso
6.
Brain ; 141(12): 3472-3481, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423029

RESUMEN

The current theory implying local, short-range overconnectivity in autism spectrum disorder, contrasting with long-range underconnectivity, is based on heterogeneous results, on limited data involving functional connectivity studies, on heterogeneous paediatric populations and non-specific methodologies. In this work, we studied short-distance structural connectivity in a homogeneous population of males with high-functioning autism spectrum disorder and used a novel methodology specifically suited for assessing U-shaped short-distance tracts, including a recently developed tractography-based atlas of the superficial white matter fibres. We acquired diffusion-weighted MRI for 58 males (27 subjects with high-functioning autism spectrum disorder and 31 control subjects) and extracted the mean generalized fractional anisotropy of 63 short-distance tracts. Neuropsychological evaluation included Wechsler Adult Intelligence Scale IV (WAIS-IV), Communication Checklist-Adult, Empathy Quotient, Social Responsiveness Scale and Behaviour Rating Inventory of Executive Function-Adult (BRIEF-A). In contradiction with the models of short-range over-connectivity in autism spectrum disorder, we found that patients with autism spectrum disorder had a significantly decreased anatomical connectivity in a component comprising 13 short tracts compared to controls. Specific short-tract atypicalities in temporal lobe and insula were significantly associated with clinical manifestations of autism spectrum disorder such as social awareness, language structure, pragmatic skills and empathy, emphasizing their importance in social dysfunction. Short-range decreased anatomical connectivity may thus be an important substrate of social deficits in autism spectrum disorder, in contrast with current models.


Asunto(s)
Trastorno del Espectro Autista/patología , Trastorno del Espectro Autista/psicología , Encéfalo/patología , Cognición , Conducta Social , Adulto , Imagen de Difusión por Resonancia Magnética , Empatía , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Vías Nerviosas/patología , Pruebas Neuropsicológicas , Sustancia Blanca/patología
7.
Neuroimage Clin ; 38: 103396, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37037118

RESUMEN

In functional magnetic imaging (fMRI) in Parkinson's disease (PD), a paradigm consisting of blocks of finger tapping and rest along with a corresponding general linear model (GLM) is often used to assess motor activity. However, this method has three limitations: (i) Due to the strong magnetic field and the confined environment of the cylindrical bore, it is troublesome to accurately monitor motor output and, therefore, variability in the performed movement is typically ignored. (ii) Given the loss of dopaminergic neurons and ongoing compensatory brain mechanisms, motor control is abnormal in PD. Therefore, modeling of patients' tapping with a constant amplitude (using a boxcar function) and the expected Parkinsonian motor output are prone to mismatch. (iii) The motor loop involves structures with distinct hemodynamic responses, for which only one type of modeling (e.g., modeling the whole block of finger tapping) may not suffice to capture these structure's temporal activation. The first two limitations call for considering results from online recordings of the real motor output that may lead to significant sensitivity improvements. This was shown in previous work using a non-magnetic glove to capture details of the patients' finger movements in a so-called kinematic approach. For the third limitation, modeling motion initiation instead of the whole tapping block has been suggested to account for different temporal activation signatures of the motor loop's structures. In the present study we propose improvements to the GLM as a tool to study motor disorders. For this, we test the robustness of the kinematic approach in an expanded cohort (n = 31), apply more conservative statistics than in previous work, and evaluate the benefits of an event-related model function. Our findings suggest that the integration of the kinematic approach offers a general improvement in detecting activations in subcortical structures, such as the basal ganglia. Additionally, modeling motion initiation using an event-related design yielded superior performance in capturing medication-related effects in the putamen. Our results may guide adaptations in analysis strategies for functional motor studies related to PD and also in more general applications.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Ganglios Basales , Movimiento/fisiología
8.
Autism Res ; 16(2): 280-293, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36495045

RESUMEN

Cerebellar abnormalities have been reported in autism spectrum disorder (ASD). Beyond its role in hallmark features of ASD, the cerebellum and its connectivity with forebrain structures also play a role in navigation. However, the current understanding of navigation abilities in ASD is equivocal, as is the impact of the disorder on the functional anatomy of the cerebellum. In the present study, we investigated the navigation behavior of a population of ASD and typically developing (TD) adults related to their brain anatomy as assessed by structural and functional MRI at rest. We used the Starmaze task, which permits assessing and distinguishing two complex navigation behaviors, one based on allocentric learning and the other on egocentric learning of a route with multiple decision points. Compared to TD controls, individuals with ASD showed similar exploration, learning, and strategy performance and preference. In addition, there was no difference in the structural or functional anatomy of the cerebellar circuits involved in navigation between the two groups. The findings of our work suggest that navigation abilities, spatio-temporal memory, and their underlying circuits are preserved in individuals with ASD.


Asunto(s)
Trastorno del Espectro Autista , Adulto , Humanos , Encéfalo , Mapeo Encefálico , Cerebelo/diagnóstico por imagen , Aprendizaje , Imagen por Resonancia Magnética
9.
Mol Autism ; 13(1): 22, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585637

RESUMEN

BACKGROUND: Understanding the development of the neuronal circuitry underlying autism spectrum disorder (ASD) is critical to shed light into its etiology and for the development of treatment options. Resting state EEG provides a window into spontaneous local and long-range neuronal synchronization and has been investigated in many ASD studies, but results are inconsistent. Unbiased investigation in large and comprehensive samples focusing on replicability is needed. METHODS: We quantified resting state EEG alpha peak metrics, power spectrum (PS, 2-32 Hz) and functional connectivity (FC) in 411 children, adolescents and adults (n = 212 ASD, n = 199 neurotypicals [NT], all with IQ > 75). We performed analyses in source-space using individual head models derived from the participants' MRIs. We tested for differences in mean and variance between the ASD and NT groups for both PS and FC using linear mixed effects models accounting for age, sex, IQ and site effects. Then, we used machine learning to assess whether a multivariate combination of EEG features could better separate ASD and NT participants. All analyses were embedded within a train-validation approach (70%-30% split). RESULTS: In the training dataset, we found an interaction between age and group for the reactivity to eye opening (p = .042 uncorrected), and a significant but weak multivariate ASD vs. NT classification performance for PS and FC (sensitivity 0.52-0.62, specificity 0.59-0.73). None of these findings replicated significantly in the validation dataset, although the effect size in the validation dataset overlapped with the prediction interval from the training dataset. LIMITATIONS: The statistical power to detect weak effects-of the magnitude of those found in the training dataset-in the validation dataset is small, and we cannot fully conclude on the reproducibility of the training dataset's effects. CONCLUSIONS: This suggests that PS and FC values in ASD and NT have a strong overlap, and that differences between both groups (in both mean and variance) have, at best, a small effect size. Larger studies would be needed to investigate and replicate such potential effects.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Adolescente , Adulto , Trastorno del Espectro Autista/diagnóstico , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Niño , Estudios Transversales , Electroencefalografía/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados
10.
Biol Psychiatry Glob Open Sci ; 1(1): 70-77, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36324430

RESUMEN

Background: Reduced activation of dopamine D1 receptor signaling may be implicated in reward functioning as a potential driver of negative symptoms in schizophrenia. Phosphodiesterase 10A (PDE10A), an enzyme that is highly expressed in the striatum, modulates both dopamine D2- and D1-dependent signaling. Methods: We assessed whether augmentation of D1 signaling by the PDE10 inhibitor RG7203 enhances imaging and behavioral markers of reward functions in patients with schizophrenia and negative symptoms. In a 3-period, double-blind, crossover study, we investigated the effects of RG7203 (5 mg and 15 mg doses) and placebo as adjunctive treatment to stable background antipsychotic treatment in patients with chronic schizophrenia with moderate levels of negative symptoms. Effects on reward functioning and reward-based effortful behavior were evaluated using the monetary incentive delay task during functional magnetic resonance imaging and the effort-cost-benefit and working memory reinforcement learning tasks. Results: Patients (N = 33; 30 male, mean age ± SD 36.6 ± 7.0 years; Positive and Negative Syndrome Scale negative symptom factor score 23.0 ± 3.5 at screening) were assessed at three study centers in the United States; 24 patients completed the study. RG7203 at 5 mg significantly increased reward expectation-related activity in the monetary incentive delay task, but in the context of significantly decreased overall activity across all task conditions. Conclusions: In contrast to our expectations, RG7203 significantly worsened reward-based effortful behavior and indices of reward learning. The results do not support the utility of RG7203 as adjunctive treatment for negative symptoms in patients with schizophrenia.

11.
Brain Commun ; 2(1): fcaa005, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32954278

RESUMEN

Levodopa is the first-line treatment for Parkinson's disease, although the precise mechanisms mediating its efficacy remain elusive. We aimed to elucidate treatment effects of levodopa on brain activity during the execution of fine movements and to compare them with deep brain stimulation of the subthalamic nuclei. We studied 32 patients with Parkinson's disease using functional MRI during the execution of finger-tapping task, alternating epochs of movement and rest. The task was performed after withdrawal and administration of a single levodopa dose. A subgroup of patients (n = 18) repeated the experiment after electrode implantation with stimulator on and off. Investigating levodopa treatment, we found a significant interaction between both factors of treatment state (off, on) and experimental task (finger tapping, rest) in bilateral putamen, but not in other motor regions. Specifically, during the off state of levodopa medication, activity in the putamen at rest was higher than during tapping. This represents an aberrant activity pattern probably indicating the derangement of basal ganglia network activity due to the lack of dopaminergic input. Levodopa medication reverted this pattern, so that putaminal activity during finger tapping was higher than during rest, as previously described in healthy controls. Within-group comparison with deep brain stimulation underlines the specificity of our findings with levodopa treatment. Indeed, a significant interaction was observed between treatment approach (levodopa, deep brain stimulation) and treatment state (off, on) in bilateral putamen. Our functional MRI study compared for the first time the differential effects of levodopa treatment and deep brain stimulation on brain motor activity. We showed modulatory effects of levodopa on brain activity of the putamen during finger movement execution, which were not observed with deep brain stimulation.

12.
J Autism Dev Disord ; 49(4): 1402-1409, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30511125

RESUMEN

Autism spectrum disorder (ASD) is a developmental disorder underdiagnosed in adults. To date, no consistent evidence of alterations in brain structure has been reported in adults with ASD and few studies were conducted at that age. We analyzed structural magnetic resonance imaging data from 167 high functioning adults with ASD and 195 controls. We ran our analyses on a discovery (n = 301) and a replication sample (n = 61). The right caudal anterior cingulate cortical thickness was significantly thinner in adults with ASD compared to controls in both the discovery and the replication sample. Our work underlines the relevance of studying the brain anatomy of an adult ASD population.


Asunto(s)
Trastorno Autístico/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Adolescente , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino
13.
Sci Transl Med ; 11(481)2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814340

RESUMEN

Despite the high clinical burden, little is known about pathophysiology underlying autism spectrum disorder (ASD). Recent resting-state functional magnetic resonance imaging (rs-fMRI) studies have found atypical synchronization of brain activity in ASD. However, no consensus has been reached on the nature and clinical relevance of these alterations. Here, we addressed these questions in four large ASD cohorts. Using rs-fMRI, we identified functional connectivity alterations associated with ASD. We tested for associations of these imaging phenotypes with clinical and demographic factors such as age, sex, medication status, and clinical symptom severity. Our results showed reproducible patterns of ASD-associated functional hyper- and hypoconnectivity. Hypoconnectivity was primarily restricted to sensory-motor regions, whereas hyperconnectivity hubs were predominately located in prefrontal and parietal cortices. Shifts in cortico-cortical between-network connectivity from outside to within the identified regions were shown to be a key driver of these abnormalities. This reproducible pathophysiological phenotype was partially associated with core ASD symptoms related to communication and daily living skills and was not affected by age, sex, or medication status. Although the large effect sizes in standardized cohorts are encouraging with respect to potential application as a treatment and for patient stratification, the moderate link to clinical symptoms and the large overlap with healthy controls currently limit the usability of identified alterations as diagnostic or efficacy readout.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Red Nerviosa/fisiopatología , Adolescente , Estudios de Cohortes , Femenino , Humanos , Masculino
14.
Methods Mol Biol ; 1750: 159-163, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29512071

RESUMEN

While now commonly applied for studying human brain function the value of functional magnetic resonance imaging in drug development has only recently been recognized. Here we describe the different functional magnetic resonance imaging techniques applied in Alzheimer's disease drug development with their applications, implementation guidelines, and potential pitfalls.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Desarrollo de Medicamentos , Imagen por Resonancia Magnética/métodos , Enfermedad de Alzheimer/patología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Humanos
15.
PLoS One ; 13(11): e0206583, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30408072

RESUMEN

Despite their wide-spread use, only limited information is available on the comparative test-retest reliability of task-based functional and resting state magnetic resonance imaging measures of blood oxygen level dependence (tb-fMRI and rs-fMRI) and cerebral blood flow (CBF) using arterial spin labeling. This information is critical to designing properly powered longitudinal studies. Here we comprehensively quantified and compared the test-retest reliability and reproducibility performance of 8 commonly applied fMRI tasks, 6 rs-fMRI metrics and CBF in 30 healthy volunteers. We find large variability in test-retest reliability performance across the different tb-fMRI paradigms and rs-fMRI metrics, ranging from poor to excellent. A larger extent of activation in tb-fMRI is linked to higher between-subject reliability of the respective task suggesting that differences in the amount of activation may be used as a first reliability estimate of novel tb-fMRI paradigms. For rs-fMRI, a good reliability of local activity estimates is paralleled by poor performance of global connectivity metrics. Evaluated CBF measures provide in general a good to excellent test-reliability matching or surpassing the best performing tb-fMRI and rs-fMRI metrics. This comprehensive effort allows for direct comparisons of test-retest reliability between the evaluated MRI domains and measures to aid the design of future tb-fMRI, rs-fMRI and CBF studies.


Asunto(s)
Circulación Cerebrovascular , Neuroimagen Funcional/estadística & datos numéricos , Imagen por Resonancia Magnética/estadística & datos numéricos , Oxígeno/sangre , Adulto , Encéfalo/anatomía & histología , Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Femenino , Humanos , Imagenología Tridimensional , Masculino , Modelos Neurológicos , Reproducibilidad de los Resultados , Descanso/fisiología , Marcadores de Spin , Análisis y Desempeño de Tareas , Adulto Joven
16.
Neuroimage Clin ; 19: 1025-1035, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30035027

RESUMEN

Levodopa and, later, deep brain stimulation (DBS) have become the mainstays of therapy for motor symptoms associated with Parkinson's disease (PD). Although these therapeutic options lead to similar clinical outcomes, the neural mechanisms underlying their efficacy are different. Therefore, investigating the differential effects of DBS and levodopa on functional brain architecture and associated motor improvement is of paramount interest. Namely, we expected changes in functional brain connectivity patterns when comparing levodopa treatment with DBS. Clinical assessment and functional magnetic resonance imaging (fMRI) was performed before and after implanting electrodes for DBS in the subthalamic nucleus (STN) in 13 PD patients suffering from severe levodopa-induced motor fluctuations and peak-of-dose dyskinesia. All measurements were acquired in a within subject-design with and without levodopa treatment, and with and without DBS. Brain connectivity changes were computed using eigenvector centrality (EC) that offers a data-driven and parameter-free approach-similarly to Google's PageRank algorithm-revealing brain regions that have an increased connectivity to other regions that are highly connected, too. Both levodopa and DBS led to comparable improvement of motor symptoms as measured with the Unified Parkinson's Disease Rating Scale motor score (UPDRS-III). However, this similar therapeutic effect was underpinned by different connectivity modulations within the motor system. In particular, EC revealed a major increase of interconnectedness in the left and right motor cortex when comparing DBS to levodopa. This was accompanied by an increase of connectivity of these motor hubs with the thalamus and cerebellum. We observed, for the first time, significant functional connectivity changes when comparing the effects of STN DBS and oral levodopa administration, revealing different treatment-specific mechanisms linked to clinical benefit in PD. Specifically, in contrast to levodopa treatment, STN DBS was associated with increased connectivity within the cortico-thalamo-cerebellar network. Moreover, given the favorable effects of STN DBS on motor complications, the changes in the patients' clinical profile might also contribute to connectivity changes associated with STN-DBS. Understanding the observed connectivity changes may be essential for enhancing the effectiveness of DBS treatment, and for better defining the pathophysiology of the disrupted motor network in PD.


Asunto(s)
Antiparkinsonianos/uso terapéutico , Estimulación Encefálica Profunda , Levodopa/uso terapéutico , Red Nerviosa/fisiopatología , Enfermedad de Parkinson/fisiopatología , Núcleo Subtalámico/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/terapia , Índice de Severidad de la Enfermedad
17.
Sci Rep ; 8(1): 4074, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29511260

RESUMEN

Application of metabolic magnetic resonance imaging measures such as cerebral blood flow in translational medicine is limited by the unknown link of observed alterations to specific neurophysiological processes. In particular, the sensitivity of cerebral blood flow to activity changes in specific neurotransmitter systems remains unclear. We address this question by probing cerebral blood flow in healthy volunteers using seven established drugs with known dopaminergic, serotonergic, glutamatergic and GABAergic mechanisms of action. We use a novel framework aimed at disentangling the observed effects to contribution from underlying neurotransmitter systems. We find for all evaluated compounds a reliable spatial link of respective cerebral blood flow changes with underlying neurotransmitter receptor densities corresponding to their primary mechanisms of action. The strength of these associations with receptor density is mediated by respective drug affinities. These findings suggest that cerebral blood flow is a sensitive brain-wide in-vivo assay of metabolic demands across a variety of neurotransmitter systems in humans.


Asunto(s)
Sistema Nervioso Central/diagnóstico por imagen , Circulación Cerebrovascular , Imagen por Resonancia Magnética/métodos , Monitorización Neurofisiológica/métodos , Neurotransmisores/metabolismo , Adulto , Anestésicos Disociativos/administración & dosificación , Antidepresivos de Segunda Generación/administración & dosificación , Antipsicóticos/administración & dosificación , Estimulantes del Sistema Nervioso Central/administración & dosificación , Femenino , Voluntarios Sanos , Humanos , Masculino , Adulto Joven
18.
Ann Clin Transl Neurol ; 4(5): 292-304, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28491897

RESUMEN

OBJECTIVE: Recent advances in understanding Spinal Muscular Atrophy (SMA) etiopathogenesis prompted development of potent intervention strategies and raised need for sensitive outcome measures capable of assessing disease progression and response to treatment. Several biomarkers have been proposed; nevertheless, no general consensus has been reached on the most feasible ones. We observed a wide range of measures over 1 year to assess their ability to monitor the disease status and progression. METHODS: 18 SMA patients and 19 healthy volunteers (HV) were followed in this 52-weeks observational study. Quantitative-MRI (qMRI) of both thighs and clinical evaluation of motor function was performed at baseline, 6, 9 and 12 months follow-up. Blood samples were taken in patients for molecular characterization at screening, 9 and 12 month follow-up. Progression, responsiveness and reliability of collected indices were quantified. Correlation analysis was performed to test for potential associations. RESULTS: QMRI indices, clinical scales and molecular measures showed high to excellent reliability. Significant differences were found between qMRI of SMA patients and HV. Significant associations were revealed between multiple qMRI measures and functional clinical scales. None of the qMRI, clinical, or molecular measures was able to detect significant disease progression over 1 year. INTERPRETATION: We probed a variety of quantitative measures for SMA in a slowly-progressing disease population over 1 year. The presented measures demonstrated potential to provide a closer link to underlying disease biology as compared to conventional functional scales. The proposed biomarker framework can guide implementation of more sensitive endpoints in future clinical trials and prove their utility in search for novel disease-modifying therapies.

19.
Neuroimage Clin ; 9: 264-74, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26509113

RESUMEN

During implantation of deep-brain stimulation (DBS) electrodes in the target structure, neurosurgeons and neurologists commonly observe a "microlesion effect" (MLE), which occurs well before initiating subthalamic DBS. This phenomenon typically leads to a transitory improvement of motor symptoms of patients suffering from Parkinson's disease (PD). Mechanisms behind MLE remain poorly understood. In this work, we exploited the notion of ranking to assess spontaneous brain activity in PD patients examined by resting-state functional magnetic resonance imaging in response to penetration of DBS electrodes in the subthalamic nucleus. In particular, we employed a hypothesis-free method, eigenvector centrality (EC), to reveal motor-communication-hubs of the highest rank and their reorganization following the surgery; providing a unique opportunity to evaluate the direct impact of disrupting the PD motor circuitry in vivo without prior assumptions. Penetration of electrodes was associated with increased EC of functional connectivity in the brainstem. Changes in connectivity were quantitatively related to motor improvement, which further emphasizes the clinical importance of the functional integrity of the brainstem. Surprisingly, MLE and DBS were associated with anatomically different EC maps despite their similar clinical benefit on motor functions. The DBS solely caused an increase in connectivity of the left premotor region suggesting separate pathophysiological mechanisms of both interventions. While the DBS acts at the cortical level suggesting compensatory activation of less affected motor regions, the MLE affects more fundamental circuitry as the dysfunctional brainstem predominates in the beginning of PD. These findings invigorate the overlooked brainstem perspective in the understanding of PD and support the current trend towards its early diagnosis.


Asunto(s)
Tronco Encefálico/fisiología , Estimulación Encefálica Profunda/efectos adversos , Imagen por Resonancia Magnética , Enfermedad de Parkinson , Descanso , Núcleo Subtalámico/patología , Adulto , Mapeo Encefálico , Tronco Encefálico/irrigación sanguínea , Imagen Eco-Planar , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Oxígeno/sangre , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Índice de Severidad de la Enfermedad , Núcleo Subtalámico/irrigación sanguínea
20.
J Neurotrauma ; 32(17): 1380-4, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24844267

RESUMEN

Neuron-specific enolase (NSE) has been suggested as a prognostic biomarker for neuronal alterations resulting from conditions such as traumatic brain injury (TBI), neurodegenerative disease, or cardiac arrest. To validate serum NSE (sNSE) as a brain-specific biomarker, we related it to functional brain imaging data in 38 healthy adults to create a physiological framework for future studies in neuropsychiatric diseases. sNSE was measured by monoclonal two-site immunoluminometric assays, and functional connectivity was investigated with resting-state functional magnetic resonance imaging (rfMRI). To identify neural hubs most essentially related to sNSE, we applied graph theory approaches, namely, the new data-driven and parameter-free approach, eigenvector centrality mapping. sNSE and eigenvector centrality were negatively correlated in the female cerebellum, without any effects in male subjects. In cerebellar cortex, NSE expression was significantly higher than whole-brain expression as investigated in the whole brain and whole genome-wide atlas of the Allen Institute for Brain Sciences (Seattle, WA). Our study shows a specific linkage between the neuronal marker protein, sNSE, and cerebellar connectivity as measured with rfMRI in the female human brain, although this finding shall be proven in future studies including more subjects. Results suggest that the inclusion of sNSE in the analysis of imaging data is a useful approach to obtain more-specific information on the neuronal mechanisms that underlie functional connectivity at rest. Establishing such a baseline resting-state pattern that is tied to a neuronal serum marker opens new perspectives in the characterization of neuropsychiatric disorders as disconnective syndromes or nexopathies, in particular, resulting from TBI, neurodegenerative disease, or cardiac arrest, in the future.


Asunto(s)
Biomarcadores/sangre , Cerebelo/fisiología , Conectoma/métodos , Red Nerviosa/fisiología , Fosfopiruvato Hidratasa/sangre , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Proyectos Piloto , Descanso , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA