Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cell ; 184(19): 5031-5052.e26, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34534465

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteogenómica , Adenocarcinoma/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Carcinoma Ductal Pancreático/diagnóstico , Estudios de Cohortes , Células Endoteliales/metabolismo , Epigénesis Genética , Femenino , Dosificación de Gen , Genoma Humano , Glucólisis , Glicoproteínas/biosíntesis , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Neoplasias Pancreáticas/diagnóstico , Fenotipo , Fosfoproteínas/metabolismo , Fosforilación , Pronóstico , Proteínas Quinasas/metabolismo , Proteoma/metabolismo , Especificidad por Sustrato , Transcriptoma/genética
2.
Cell ; 182(1): 200-225.e35, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32649874

RESUMEN

To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteogenómica , Adenocarcinoma del Pulmón/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Variaciones en el Número de Copia de ADN/genética , Metilación de ADN/genética , Femenino , Humanos , Neoplasias Pulmonares/inmunología , Masculino , Persona de Mediana Edad , Mutación/genética , Proteínas de Fusión Oncogénica , Fenotipo , Fosfoproteínas/metabolismo , Proteoma/metabolismo
3.
Clin Proteomics ; 21(1): 7, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291365

RESUMEN

BACKGROUND: Omics characterization of pancreatic adenocarcinoma tissue is complicated by the highly heterogeneous and mixed populations of cells. We evaluate the feasibility and potential benefit of using a coring method to enrich specific regions from bulk tissue and then perform proteogenomic analyses. METHODS: We used the Biopsy Trifecta Extraction (BioTExt) technique to isolate cores of epithelial-enriched and stroma-enriched tissue from pancreatic tumor and adjacent tissue blocks. Histology was assessed at multiple depths throughout each core. DNA sequencing, RNA sequencing, and proteomics were performed on the cored and bulk tissue samples. Supervised and unsupervised analyses were performed based on integrated molecular and histology data. RESULTS: Tissue cores had mixed cell composition at varying depths throughout. Average cell type percentages assessed by histology throughout the core were better associated with KRAS variant allele frequencies than standard histology assessment of the cut surface. Clustering based on serial histology data separated the cores into three groups with enrichment of neoplastic epithelium, stroma, and acinar cells, respectively. Using this classification, tumor overexpressed proteins identified in bulk tissue analysis were assigned into epithelial- or stroma-specific categories, which revealed novel epithelial-specific tumor overexpressed proteins. CONCLUSIONS: Our study demonstrates the feasibility of multi-omics data generation from tissue cores, the necessity of interval H&E stains in serial histology sections, and the utility of coring to improve analysis over bulk tissue data.

4.
PLoS Genet ; 17(12): e1009986, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34941867

RESUMEN

TP53 and ARID1A are frequently mutated across cancer but rarely in the same primary tumor. Endometrial cancer has the highest TP53-ARID1A mutual exclusivity rate. However, the functional relationship between TP53 and ARID1A mutations in the endometrium has not been elucidated. We used genetically engineered mice and in vivo genomic approaches to discern both unique and overlapping roles of TP53 and ARID1A in the endometrium. TP53 loss with oncogenic PIK3CAH1047R in the endometrial epithelium results in features of endometrial hyperplasia, adenocarcinoma, and intraepithelial carcinoma. Mutant endometrial epithelial cells were transcriptome profiled and compared to control cells and ARID1A/PIK3CA mutant endometrium. In the context of either TP53 or ARID1A loss, PIK3CA mutant endometrium exhibited inflammatory pathway activation, but other gene expression programs differed based on TP53 or ARID1A status, such as epithelial-to-mesenchymal transition. Gene expression patterns observed in the genetic mouse models are reflective of human tumors with each respective genetic alteration. Consistent with TP53-ARID1A mutual exclusivity, the p53 pathway is activated following ARID1A loss in the endometrial epithelium, where ARID1A normally directly represses p53 pathway genes in vivo, including the stress-inducible transcription factor, ATF3. However, co-existing TP53-ARID1A mutations led to invasive adenocarcinoma associated with mutant ARID1A-driven ATF3 induction, reduced apoptosis, TP63+ squamous differentiation and invasion. These data suggest TP53 and ARID1A mutations drive shared and distinct tumorigenic programs in the endometrium and promote invasive endometrial cancer when existing simultaneously. Hence, TP53 and ARID1A mutations may co-occur in a subset of aggressive or metastatic endometrial cancers, with ARID1A loss promoting squamous differentiation and the acquisition of invasive properties.


Asunto(s)
Proteínas de Unión al ADN/genética , Neoplasias Endometriales/genética , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Carcinogénesis/genética , Carcinoma in Situ/genética , Carcinoma in Situ/patología , Fosfatidilinositol 3-Quinasa Clase I/genética , Hiperplasia Endometrial/genética , Hiperplasia Endometrial/patología , Neoplasias Endometriales/patología , Endometrio/patología , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Ratones , Mutación/genética
5.
Carcinogenesis ; 44(1): 54-64, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36548952

RESUMEN

Loss of heterozygosity and promoter hypermethylation of APC is frequently observed in human endometrial cancer, which is the most common gynecological cancer in the USA, but its carcinogenic driver status in the endometrial epithelium has not been confirmed. We have identified a novel population of progenitor endometrial epithelial cells (EECs) in mice that express lysozyme M (LysM) and give rise to approximately 15% of all EECs in adult mice. LysM is a glycoside hydrolase that is encoded by Lyz2 and functions to protect cells from bacteria as part of the innate immune system. Its expression has been shown in a subset of hematopoietic stem cells and in specialized lung and small intestinal epithelial cells. Conditional deletion of Apc in LysM + EECs results in significantly more epithelial cells compared to wild-type mice. At 5 months of age, the ApccKO mice have enlarged uterine horns with pathology that is consistent with endometrial hyperplasia with cystic endometrial glands, non-villous luminal papillae and nuclear atypia. Nuclear accumulation of ß-catenin and ERα, both of which are known to induce endometrial hyperplasia, was observed in the EECs of the ApccKO mice. These results confirm that loss of APC in EECs can result in a phenotype similar to endometrial hyperplasia.


Asunto(s)
Hiperplasia Endometrial , Neoplasias Endometriales , Adulto , Femenino , Humanos , Ratones , Animales , Hiperplasia Endometrial/genética , Hiperplasia Endometrial/patología , Células Epiteliales/patología , Endometrio/patología , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Células Madre/metabolismo
6.
Clin Proteomics ; 19(1): 36, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266629

RESUMEN

BACKGROUND: The identification of differentially expressed tumor-associated proteins and genomic alterations driving neoplasia is critical in the development of clinical assays to detect cancers and forms the foundation for understanding cancer biology. One of the challenges in the analysis of pancreatic ductal adenocarcinoma (PDAC) is the low neoplastic cellularity and heterogeneous composition of bulk tumors. To enrich neoplastic cells from bulk tumor tissue, coring, and laser microdissection (LMD) sampling techniques have been employed. In this study, we assessed the protein and KRAS mutation changes associated with samples obtained by these enrichment techniques and evaluated the fraction of neoplastic cells in PDAC for proteomic and genomic analyses. METHODS: Three fresh frozen PDAC tumors and their tumor-matched normal adjacent tissues (NATs) were obtained from three sampling techniques using bulk, coring, and LMD; and analyzed by TMT-based quantitative proteomics. The protein profiles and characterizations of differentially expressed proteins in three sampling groups were determined. These three PDACs and samples of five additional PDACs obtained by the same three sampling techniques were also subjected to genomic analysis to characterize KRAS mutations. RESULTS: The neoplastic cellularity of eight PDACs ranged from less than 10% to over 80% based on morphological review. Distinctive proteomic patterns and abundances of certain tumor-associated proteins were revealed when comparing the tumors and NATs by different sampling techniques. Coring and bulk tissues had comparable proteome profiles, while LMD samples had the most distinct proteome composition compared to bulk tissues. Further genomic analysis of bulk, cored, or LMD samples demonstrated that KRAS mutations were significantly enriched in LMD samples while coring was less effective in enriching for KRAS mutations when bulk tissues contained a relatively low neoplastic cellularity. CONCLUSIONS: In addition to bulk tissues, samples from LMD and coring techniques can be used for proteogenomic studies. The greatest enrichment of neoplastic cellularity is obtained with the LMD technique.

7.
Reprod Biol Endocrinol ; 20(1): 163, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36424602

RESUMEN

Obesity impacts fertility and is positively correlated with endometrial hyperplasia and endometrial cancer occurrence. Endometrial epithelia often harbor disease driver-mutations, while endometrial stroma are highly regulative of neighboring epithelia. Here, we sought to determine distinct transcriptome changes occurring in individual cell types in the obese mouse uterus. Outbred CD-1 mice were fed high-fat or control diets for 18 weeks, estrous cycle staged, and endometrial epithelia, macrophages, and stroma isolated for transcriptomic analysis. High-fat diet mice displayed increased body mass and developed glucose intolerance, hyperinsulinemia, and fatty liver. Obese mouse epithelia displayed differential gene expression for genes related to innate immunity and leukocyte chemotaxis. The obese mouse stroma differentially expressed factors related to circadian rhythm, and expression of these genes correlated with glucose tolerance or body mass. We observed correlations between F4/80 + macrophage numbers, Cleaved Caspase 3 (CC3) apoptosis marker staining and glucose intolerance among obese mice, including a subgroup of obese mice with high CC3 + luminal epithelia. This subgroup displayed differential gene expression among all cell types, with pathways related to immune escape in epithelia and macrophages, while the stroma dysregulated pathways related to regulation of epithelia. These results suggest an important role for differential response of both the epithelia and stroma in their response to obesity, while macrophages are dysregulated in the context of apoptotic epithelia. The obesity-related gene expression programs in cells within the uterine microenvironment may influence the ability of the endometrium to function during pregnancy and influence disease pathogenesis.


Asunto(s)
Intolerancia a la Glucosa , Transcriptoma , Embarazo , Femenino , Ratones , Animales , Ratones Obesos , Obesidad/genética , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos
8.
J Surg Res ; 279: 464-473, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35842971

RESUMEN

INTRODUCTION: Collagen degradation can lead to early postoperative weakness in colorectal anastomosis. Matrix metalloproteinase inhibitors (MMPIs) are shown to decrease collagen breakdown and enhance healing in anastomosis in animal models. Here, we evaluated the effectiveness of a novel anastomotic augmentation ring (AAR) that releases doxycycline, an MMPI, from a poly(lactic-co-glycolic) acid ring in porcine anastomoses. METHODS: Two end-to-end stapled colorectal anastomoses were performed in 20 Yorkshire-Hampshire pigs. AAR was randomly incorporated into either the proximal or distal anastomosis as treatment, while nonaugmented anastomosis served as a control. Animals were then euthanized on days 3, 4, and 5 before anastomosis explantation and burst pressure measurement. Each anastomosis site was also collected for histology, hydroxyproline content, and gene expression microarray analyses. RESULTS: No abscess or anastomotic leak was detected. Average burst pressures were not significantly different at any time point. There is no statistical difference in collagen content between the treatment group and controls. Gene expression analysis revealed no statistically significant in differentially expressed genes. However, genes related to inflammation, such as C-C motif chemokine ligand 11 (CCL11), CD70, and C-X-C motif chemokine ligand 10 (CXCL10), were upregulated (not statistically significant) in AAR compared to non-AAR anastomosis sites on days 3 and 4. CONCLUSIONS: This pilot study shows that doxycycline-release AAR is feasible and safe. While burst pressure and collagen content did not change significantly with doxycycline treatment, upregulating genes related to the inflammatory process for pathogen and debris clearance in AAR may improve the early stage of colorectal anastomotic healing.


Asunto(s)
Neoplasias Colorrectales , Doxiciclina , Animales , Anastomosis Quirúrgica/efectos adversos , Fuga Anastomótica/etiología , Fuga Anastomótica/prevención & control , Quimiocinas , Colágeno , Colon/cirugía , Estudios Cruzados , Método Doble Ciego , Doxiciclina/farmacología , Hidroxiprolina , Ligandos , Inhibidores de la Metaloproteinasa de la Matriz , Proyectos Piloto , Porcinos
9.
Int J Cancer ; 147(8): 2265-2278, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32388866

RESUMEN

The microenvironment of pancreatic cancer adenocarcinoma (PDAC) is highly desmoplastic with distinct tumor-restraining and tumor-promoting fibroblast subpopulations. Re-education rather than indiscriminate elimination of these fibroblasts has emerged as a new strategy for combination therapy. Here, we studied the effects of global loss of profibrotic noncoding regulatory microRNA-21 (miR-21) in K-Ras-driven p53-deleted genetically engineered mouse models of PDAC. Strikingly, loss of miR-21 accelerated tumor initiation via mucinous cystic neoplastic lesions and progression to locally advanced invasive carcinoma from which animals precipitously succumbed at an early age. The absence of tumor-restraining myofibroblasts and a massive infiltrate of immune cells were salient phenotypic features of global miR-21 loss. Stromal miR-21 activity was required for induction of tumor-restraining myofibroblasts in in vivo isograft transplantation experiments. Low miR-21 expression negatively correlated with a fibroblast gene expression signature and positively with an immune cell gene expression signature in The Cancer Genome Atlas PDAC data set (n = 156) mirroring findings in the mouse models. Our results exposed an overall tumor-suppressive function of miR-21 in in vivo PDAC models. These results have important clinical implications for anti-miR-21-based inhibitory therapeutic approaches under consideration for PDAC and other cancer types. Mechanistic dissection of the cell-intrinsic role of miR-21 in cancer-associated fibroblasts and other cell types will be needed to inform best strategies for pharmacological modulation of miR-21 activity to remodel the tumor microenvironment and enhance treatment response in PDAC.


Asunto(s)
MicroARNs/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Modelos Animales de Enfermedad , Femenino , Fibroblastos/patología , Regulación Neoplásica de la Expresión Génica/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/patología , Transcriptoma/genética , Microambiente Tumoral/genética , Neoplasias Pancreáticas
10.
Breast Cancer Res ; 21(1): 129, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31779648

RESUMEN

BACKGROUND: Prophylactic mastectomy is the most effective intervention to prevent breast cancer. However, this major surgery has life-changing consequences at the physical, emotional, psychological, and social levels. Therefore, only high-risk individuals consider this aggressive procedure, which completely removes the mammary epithelial cells from which breast cancer arises along with surrounding tissue. Here, we seek to develop a minimally invasive procedure as an alternative to prophylactic mastectomy by intraductal (ID) delivery of a cell-killing solution that locally ablates the mammary epithelial cells before they become malignant. METHODS: After ID injection of a 70% ethanol-containing solution in FVB/NJ female animals, ex vivo dual stained whole-mount tissue analysis and in vivo X-ray microcomputed tomography imaging were used to visualize ductal tree filling, and histological and multiplex immunohistochemical assays were used to characterize ablative effects and quantitate the number of intact epithelial cells and stroma. After ID injection of 70% ethanol or other solutions in cancer-prone FVB-Tg-C3(1)-TAg female animals, mammary glands were palpated weekly to establish tumor latency and examined after necropsy to record tumor incidence. Statistical difference in median tumor latency and tumor incidence between experimental groups was analyzed by log-rank test and logistic mixed-effects model, respectively. RESULTS: We report that ID injection of 70% ethanol effectively ablates the mammary epithelia with limited collateral damage to surrounding stroma and vasculature in the murine ductal tree. ID injection of 70% ethanol into the mammary glands of the C3(1)-TAg multifocal breast cancer model significantly delayed tumor formation (median latency of 150 days in the untreated control group [n = 25] vs. 217 days in the ethanol-treated group [n = 13], p value < 0.0001) and reduced tumor incidence (34% of glands with tumors [85 of 250] in the untreated control group vs. 7.3% of glands with tumor [7 of 95] in the ethanol-treated group, risk ratio = 4.76 [95% CI 1.89 to 11.97, p value < 0.0001]). CONCLUSIONS: This preclinical study demonstrates the feasibility of local ductal tree ablation as a novel strategy for primary prevention of breast cancer. Given the existing clinical uses of ethanol, ethanol-based ablation protocols could be readily implemented in first-in-human clinical trials for high-risk individuals.


Asunto(s)
Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Quimioembolización Terapéutica , Etanol/administración & dosificación , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/patología , Animales , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/mortalidad , Quimioembolización Terapéutica/métodos , Modelos Animales de Enfermedad , Femenino , Humanos , Imagenología Tridimensional , Inmunohistoquímica , Glándulas Mamarias Animales/diagnóstico por imagen , Ratones , Sobrevida , Resultado del Tratamiento , Microtomografía por Rayos X
11.
Breast Cancer Res ; 20(1): 89, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089519

RESUMEN

After the publication of this work [1], an error was noticed in Fig. 4a. The micrograph image sh528 was accidentally duplicated.

12.
Mol Cell Proteomics ; 14(5): 1323-33, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25733690

RESUMEN

The sialyl-Lewis A (sLeA) glycan forms the basis of the CA19-9 assay and is the current best biomarker for pancreatic cancer, but because it is not elevated in ∼25% of pancreatic cancers, it is not useful for early diagnosis. We hypothesized that sLeA-low tumors secrete glycans that are related to sLeA but not detectable by CA19-9 antibodies. We used a method called motif profiling to predict that a structural isomer of sLeA called sialyl-Lewis X (sLeX) is elevated in the plasma of some sLeA-low cancers. We corroborated this prediction in a set of 48 plasma samples and in a blinded set of 200 samples. An antibody sandwich assay formed by the capture and detection of sLeX was elevated in 13 of 69 cancers that were not elevated in sLeA, and a novel hybrid assay of sLeA capture and sLeX detected 24 of 69 sLeA-low cancers. A two-marker panel based on combined sLeA and sLeX detection differentiated 109 pancreatic cancers from 91 benign pancreatic diseases with 79% accuracy (74% sensitivity and 78% specificity), significantly better than sLeA alone, which yielded 68% accuracy (65% sensitivity and 71% specificity). Furthermore, sLeX staining was evident in tumors that do not elevate plasma sLeA, including those with poorly differentiated ductal adenocarcinoma. Thus, glycan-based biomarkers could characterize distinct subgroups of patients. In addition, the combined use of sLeA and sLeX, or related glycans, could lead to a biomarker panel that is useful in the clinical diagnosis of pancreatic cancer. Précis: This paper shows that a structural isomer of the current best biomarker for pancreatic cancer, CA19-9, is elevated in the plasma of patients who are low in CA19-9, potentially enabling more comprehensive detection and classification of pancreatic cancers.


Asunto(s)
Carcinoma Ductal Pancreático/sangre , Oligosacáridos/sangre , Neoplasias Pancreáticas/sangre , Anticuerpos Monoclonales/química , Antígenos de Carbohidratos Asociados a Tumores/análisis , Antígenos de Carbohidratos Asociados a Tumores/química , Antígenos de Carbohidratos Asociados a Tumores/genética , Antígeno CA-19-9 , Secuencia de Carbohidratos , Carcinoma Ductal Pancreático/química , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/inmunología , Expresión Génica , Humanos , Inmunoensayo , Datos de Secuencia Molecular , Oligosacáridos/química , Oligosacáridos/inmunología , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/inmunología , Polisacáridos/química , Polisacáridos/inmunología , Sensibilidad y Especificidad , Antígeno Sialil Lewis X
13.
J Proteome Res ; 14(6): 2594-605, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25938165

RESUMEN

The fucose post-translational modification is frequently increased in pancreatic cancer, thus forming the basis for promising biomarkers, but a subset of pancreatic cancer patients does not elevate the known fucose-containing biomarkers. We hypothesized that such patients elevate glycan motifs with fucose in linkages and contexts different from the known fucose-containing biomarkers. We used a database of glycan array data to identify the lectins CCL2 to detect glycan motifs with fucose in a 3' linkage; CGL2 for motifs with fucose in a 2' linkage; and RSL for fucose in all linkages. We used several practical methods to test the lectins and determine the optimal mode of detection, and we then tested whether the lectins detected glycans in pancreatic cancer patients who did not elevate the sialyl-Lewis A glycan, which is upregulated in ∼75% of pancreatic adenocarcinomas. Patients who did not upregulate sialyl-Lewis A, which contains fucose in a 4' linkage, tended to upregulate fucose in a 3' linkage, as detected by CCL2, but they did not upregulate total fucose or fucose in a 2' linkage. CCL2 binding was high in cancerous epithelia from pancreatic tumors, including areas negative for sialyl-Lewis A and a related motif containing 3' fucose, sialyl-Lewis X. Thus, glycans containing 3' fucose may complement sialyl-Lewis A to contribute to improved detection of pancreatic cancer. Furthermore, the use of panels of recombinant lectins may uncover details about glycosylation that could be important for characterizing and detecting cancer.


Asunto(s)
Adenocarcinoma/metabolismo , Fucosa/metabolismo , Lectinas/metabolismo , Neoplasias Pancreáticas/metabolismo , Polisacáridos/metabolismo , Regulación hacia Arriba , Quimiocina CCL2/metabolismo , Humanos , Sondas Moleculares , Polisacáridos/química
14.
Prostate ; 75(14): 1579-85, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26139199

RESUMEN

BACKGROUND: A clinical need to better categorize patients with prostate cancer exists. The Wnt/ß-catenin signaling pathway plays important roles in human prostate cancer progression. Deletion of the endogenous Wnt antagonist adenomatous polyposis coli (Apc) in mice causes high grade prostate intraepithelial neoplasia, widely thought to be the precursor to prostate cancer. However, no metastasis occurrs in this model. New mouse models are needed to determine molecular causes of tumorigenesis, progression, and metastasis. METHODS: To determine whether the overexpression of the prostate oncogene Hepsin could cause prostate cancer progression, we crossed a prostate-specific Hepsin overexpression model to a prostate-specific Apc-deletion model and classified the observed phenotype. RESULTS: When Apc was deleted and Hepsin overexpressed concurrently, mice displayed invasive carcinoma, with loss of membrane characteristics and increase of fibrosis. These tumors had both luminal and basaloid characteristics. Though no metastasis was observed, there was evidence of adenomas and lung necrosis, inflammation, and chronic hemorrhage. CONCLUSIONS: This work indicates that the Wnt/ß-catenin pathway and the Hepsin pathway act in concert to promote prostate cancer progression. Both of these pathways are up-regulated in human prostate cancer and could represent chemotherapeutic targets.


Asunto(s)
Poliposis Adenomatosa del Colon , Biomarcadores de Tumor/biosíntesis , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/metabolismo , Serina Endopeptidasas/biosíntesis , Poliposis Adenomatosa del Colon/genética , Animales , Masculino , Proteínas de la Membrana/biosíntesis , Ratones , Ratones Noqueados , Ratones Transgénicos , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Vía de Señalización Wnt/fisiología
15.
Anal Chem ; 87(19): 9715-21, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26339978

RESUMEN

Experiments involving the high-throughput quantification of image data require algorithms for automation. A challenge in the development of such algorithms is to properly interpret signals over a broad range of image characteristics, without the need for manual adjustment of parameters. Here we present a new approach for locating signals in image data, called Segment and Fit Thresholding (SFT). The method assesses statistical characteristics of small segments of the image and determines the best-fit trends between the statistics. Based on the relationships, SFT identifies segments belonging to background regions; analyzes the background to determine optimal thresholds; and analyzes all segments to identify signal pixels. We optimized the initial settings for locating background and signal in antibody microarray and immunofluorescence data and found that SFT performed well over multiple, diverse image characteristics without readjustment of settings. When used for the automated analysis of multicolor, tissue-microarray images, SFT correctly found the overlap of markers with known subcellular localization, and it performed better than a fixed threshold and Otsu's method for selected images. SFT promises to advance the goal of full automation in image analysis.


Asunto(s)
Técnica del Anticuerpo Fluorescente/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Análisis por Matrices de Proteínas/métodos , Algoritmos , Anticuerpos/análisis , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Programas Informáticos
16.
Am J Pathol ; 184(12): 3217-25, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25440114

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive subtype defined by the lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. Expression of miR-21, an oncomiR, is frequently altered and may be distinctly expressed in the tumor stroma. Because tumor lesions are a complex mixture of cell types, we hypothesized that analysis of miR-21 expression at single-cell resolution could provide more accurate information to assess disease recurrence risk and BC-related death. We implemented a fully automated, tissue slide-based assay to detect miR-21 expression in 988 patients with BC. The miR-21(High) group exhibited shorter recurrence-free survival [hazard ratio (HR), 1.71; P < 0.001] and BC-specific survival (HR, 1.96; P < 0.001) in multivariate regression analyses. When tumor compartment and levels of miR-21 expression were considered, significant associations with poor clinical outcome were detected exclusively in tumor epithelia from estrogen receptor- and/or progesterone receptor-positive human epidermal growth factor receptor 2-negative cases [recurrence-free survival: HR, 3.67 (P = 0.006); BC-specific survival: HR, 5.13 (P = 0.002)] and in tumor stroma from TNBC cases [recurrence-free survival: HR, 2.59 (P = 0.013); BC-specific survival: HR, 3.37 (P = 0.003)]. These findings suggest that the context of altered miR-21 expression provides clinically relevant information. Importantly, miR-21 expression was predominantly up-regulated and potentially prognostic in the tumor stroma of TNBC.


Asunto(s)
Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Células del Estroma/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Anciano , Supervivencia Celular , Estudios de Cohortes , Supervivencia sin Enfermedad , Femenino , Humanos , Inmunohistoquímica , Hibridación in Situ , Persona de Mediana Edad , Análisis Multivariante , Pronóstico , Modelos de Riesgos Proporcionales , Receptor ErbB-2/metabolismo
17.
J Endocr Soc ; 8(7): bvae104, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38854907

RESUMEN

The obesity epidemic continues to increase, with half of US women predicted to be obese by 2030. Women with obesity are at increased risk for not only cardiovascular and liver disease, but also reproductive disorders. Although mouse models are useful in studying the effects of obesity, there is inconsistency in obesity-induction methods, diet composition, and mouse strains, and studies using female mice are limited. In this study, we sought to compare the effects of a 45% high-fat diet (HFD) versus a 60% HFD on the uterine estrous cycle of nulligravid C57BL/6J mice. For 22 weeks, we placed a total of 20 mice on either a 60% HFD, 45% HFD, or each HFD-matched control diet (CD). Both HFDs produced significant weight gain, with 60% HFD and 45% HFD gaining significant weight after 2 weeks and 15 weeks, respectively. Additionally, both HFDs led to glucose intolerance, fatty liver, and adipocyte hypertrophy. Mice fed 60% HFD displayed hyperphagia in the first 12 weeks of HFD treatment. Moreover, 60% HFD-treated mice had a longer estrous cycle length and an increased percentage of estrus stage samplings compared to CD-treated mice. Estrous cycle stage-controlled 60% HFD-treated mice displayed an increased estrogen-to-progesterone ratio and decreased ovarian corpora lutea compared to CD-treated mice, which may underlie the observed estrous cycle differences. There was no significant difference between diets regarding endometrial morphology or the percent of endometrial CD45+ immune cells. Our results indicate that consideration is needed when selecting a HFD-induced obesity mouse model for research involving female reproductive health.

18.
bioRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38260423

RESUMEN

ZNRF3 and RNF43 are closely related transmembrane E3 ubiquitin ligases with significant roles in development and cancer. Conventionally, their biological functions have been associated with regulating WNT signaling receptor ubiquitination and degradation. However, our proteogenomic studies have revealed EGFR as the most negatively correlated protein with ZNRF3/RNF43 mRNA levels in multiple human cancers. Through biochemical investigations, we demonstrate that ZNRF3/RNF43 interact with EGFR via their extracellular domains, leading to EGFR ubiquitination and subsequent degradation facilitated by the E3 ligase RING domain. Overexpression of ZNRF3 reduces EGFR levels and suppresses cancer cell growth in vitro and in vivo, whereas knockout of ZNRF3/RNF43 stimulates cell growth and tumorigenesis through upregulated EGFR signaling. Together, these data highlight ZNRF3 and RNF43 as novel E3 ubiquitin ligases of EGFR and establish the inactivation of ZNRF3/RNF43 as a driver of increased EGFR signaling, ultimately promoting cancer progression. This discovery establishes a connection between two fundamental signaling pathways, EGFR and WNT, at the level of cytoplasmic membrane receptor, uncovering a novel mechanism underlying the frequent co-activation of EGFR and WNT signaling in development and cancer.

19.
Cell Rep Med ; 5(5): 101547, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38703764

RESUMEN

Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Renales , Neoplasias Renales , Proteogenómica , Humanos , Proteogenómica/métodos , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Transcriptoma/genética , Masculino , Femenino , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica
20.
Breast Cancer Res ; 15(2): R28, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23536962

RESUMEN

INTRODUCTION: Quiescin sulfhydryl oxidase 1 (QSOX1) oxidizes sulfhydryl groups to form disulfide bonds in proteins. Tumor specific expression of QSOX1 has been reported for numerous tumor types. In this study, we investigate QSOX1 as a marker of breast tumor progression and evaluate the role of QSOX1 as it relates to breast tumor growth and metastasis. METHODS: Correlation of QSOX1 expression with breast tumor grade, subtype and estrogen receptor (ER) status was gathered through informatic analysis using the "Gene expression based Outcome for Breast cancer Online" (GOBO) web-based tool. Expression of QSOX1 protein in breast tumors tissue microarray (TMA) and in a panel of breast cancer cell lines was used to confirm our informatics analysis. To investigate malignant cell mechanisms for which QSOX1 might play a key role, we suppressed QSOX1 protein expression using short hairpin (sh) RNA in ER+ Luminal A-like MCF7, ER+ Luminal B-like BT474 and ER- Basal-like BT549 breast cancer cell lines. RESULTS: GOBO analysis revealed high levels of QSOX1 RNA expression in ER+ subtypes of breast cancer. In addition, Kaplan Meyer analyses revealed QSOX1 RNA as a highly significant predictive marker for both relapse and poor overall survival in Luminal B tumors. We confirmed this finding by evaluation of QSOX1 protein expression in breast tumors and in a panel of breast cancer cell lines. Expression of QSOX1 in breast tumors correlates with increasing tumor grade and high Ki-67 expression. Suppression of QSOX1 protein slowed cell proliferation as well as dramatic inhibition of MCF7, BT474 and BT549 breast tumor cells from invading through Matrigel™ in a modified Boyden chamber assay. Inhibition of invasion could be rescued by the exogenous addition of recombinant QSOX1. Gelatin zymography indicated that QSOX1 plays an important role in the function of MMP-9, a key mediator of breast cancer invasive behavior. CONCLUSIONS: Taken together, our results suggest that QSOX1 is a novel biomarker for risk of relapse and poor survival in Luminal B breast cancer, and has a pro-proliferative and pro-invasive role in malignant progression partly mediated through a decrease in MMP-9 functional activity.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Recurrencia Local de Neoplasia/enzimología , Recurrencia Local de Neoplasia/patología , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Western Blotting , Neoplasias de la Mama/mortalidad , Ciclo Celular , Movimiento Celular , Proliferación Celular , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Técnicas para Inmunoenzimas , Metaloproteinasa 9 de la Matriz/genética , Clasificación del Tumor , Invasividad Neoplásica , Recurrencia Local de Neoplasia/mortalidad , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Fenotipo , Pronóstico , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tasa de Supervivencia , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA