Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 25(1): 129-41, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25236617

RESUMEN

Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity.


Asunto(s)
Burkholderia pseudomallei/genética , Epigénesis Genética , Genoma Bacteriano , Recombinación Genética , Transcriptoma , Animales , Cartilla de ADN , ADN Bacteriano/genética , Escherichia coli/genética , Femenino , Eliminación de Gen , Estudios de Asociación Genética , Genómica , Haplotipos , Humanos , Melioidosis/microbiología , Ratones , Ratones Endogámicos BALB C , Tipificación de Secuencias Multilocus , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
3.
Hum Mol Genet ; 12(24): 3245-58, 2003 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-14570715

RESUMEN

Recent work using expression profiling to computationally predict the estrogen receptor (ER) status of breast tumors has revealed that certain tumors are characterized by a high prediction uncertainty ('low-confidence'). We analyzed these 'low-confidence' tumors and determined that their 'uncertain' prediction status arises as a result of widespread perturbations in multiple genes whose expression is important for ER subtype discrimination. Patients with 'low-confidence' ER+ tumors exhibited a significantly worse overall survival (P=0.03) and shorter time to distant metastasis (P=0.004) compared with their 'high-confidence' ER+ counterparts, indicating that the 'high-' and 'low-confidence' binary distinction is clinically meaningful. We then discovered that elevated expression of the ERBB2 receptor is significantly correlated with a breast tumor exhibiting a 'low-confidence' prediction, and this association was subsequently validated across multiple independently derived breast cancer expression datasets employing a variety of different array technologies and patient populations. Although ERBB2 signaling has been proposed to inhibit the transcriptional activity of ER, a large proportion of the perturbed genes in the 'low-confidence'/ERBB2+ samples are not known to be estrogen responsive, and a recently described bioinformatic algorithm (DEREF) was used to demonstrate the absence of potential estrogen-response elements (EREs) in their promoters. We propose that a significant portion of ERBB2's effects on ER+ breast tumors may involve ER-independent mechanisms of gene activation, which may contribute to the clinically aggressive behavior of the 'low-confidence' breast tumor subtype.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias Hormono-Dependientes/diagnóstico , Receptor ErbB-2/metabolismo , Algoritmos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico , Estadística como Asunto , Tasa de Supervivencia , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA