Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Nano Lett ; 24(1): 97-103, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38127716

RESUMEN

The programmable photonic integrated circuit (PIC) is an enabling technology behind optical interconnects and quantum information processing. Conventionally, the programmability of PICs is driven by the thermo-optic effect, free carrier dispersion, or mechanical tuning. These effects afford either high speed or a large extinction ratio, but all require constant power or bias to maintain the states, which is undesirable for programmability with infrequent switching. Recent progress in programmable PICs based on nonvolatile phase-change materials (PCMs) offers an attractive solution to a truly "set-and-forget" switch that requires zero static energy. Here, we report an essential building block of large-scale programmable PICs─a racetrack resonator with independent control of coupling and phase. We changed the resonance extinction ratio (ER) without perturbing the resonance wavelength, leveraging a programmable unit based on a directional coupler and a low-loss PCM Sb2Se3. The unit is only 33-µm-long and has an operating bandwidth over 50 nm, a low insertion loss (∼0.36 dB), high ER (∼15 dB), and excellent fabrication yield of over 1000 cycles endurance across nine switches. The work is a crucial step toward future large-scale energy-efficient programmable PICs.

2.
Opt Express ; 32(7): 11681-11692, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571010

RESUMEN

Quantum cascade lasers (QCLs) are ubiquitous mid-infrared sources owing to their flexible designs and compact footprints. Manufacturing multiwavelength QCL chips with high power levels and good beam quality is highly desirable for many applications. In this study, we demonstrate an λ ∼ 4.9 µm monolithic, wavelength beam-combined (WBC) infrared laser source by integrating on a single chip array of five QCL gain sections with an arrayed waveguide grating (AWG). Optical feedback from the cleaved facets enables lasing, whereas the integrated AWG locks the emission spectrum of each gain section to its corresponding input channel wavelength and spatially combines their signals into a single-output waveguide. Our chip features high peak power from the common aperture exceeding 0.6 W for each input channel, with a side-mode suppression ratio (SMSR) of over 27 dB when operated in pulsed mode. Our active/passive integration approach allows for a seamless transition from the QCL ridges to the AWG without requiring regrowth or evanescent coupling schemes, leading to a robust design. These results pave the way for the development of highly compact mid-IR sources suitable for applications such as hyperspectral imaging.

3.
Small ; 19(50): e2304145, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37649187

RESUMEN

Reconfigurable or programmable photonic devices are rapidly growing and have become an integral part of many optical systems. The ability to selectively modulate electromagnetic waves through electrical stimuli is crucial in the advancement of a variety of applications from data communication and computing devices to environmental science and space explorations. Chalcogenide-based phase-change materials (PCMs) are one of the most promising material candidates for reconfigurable photonics due to their large optical contrast between their different solid-state structural phases. Although significant efforts have been devoted to accurate simulation of PCM-based devices, in this paper, three important aspects which have often evaded prior models yet having significant impacts on the thermal and phase transition behavior of these devices are highlighted: the enthalpy of fusion, the heat capacity change upon glass transition, as well as the thermal conductivity of liquid-phase PCMs. The important topic of switching energy scaling in PCM devices, which also helps explain why the three above-mentioned effects have long been overlooked in electronic PCM memories but only become important in photonics, is further investigated. These findings offer insight to facilitate accurate modeling of PCM-based photonic devices and can inform the development of more efficient reconfigurable optics.

4.
Opt Express ; 31(3): 5056-5068, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785457

RESUMEN

Photonic integrated circuits and mid-infrared quantum cascade lasers have attracted significant attention over the years because of the numerous applications enabled by these compact semiconductor chips. In this paper, we demonstrate low loss passive waveguides and highly efficient arrayed waveguide gratings that can be used, for example, to beam combine infrared (IR) laser arrays. The waveguide structure used consists of an In0.53Ga0.47As core and InP cladding layers. This material system was chosen because of its compatibility with future monolithic integration with quantum cascade lasers. Different photonic circuits were fabricated using standard semiconductor processes, and experiments conducted with these chips demonstrated low-loss waveguides with an estimated propagation loss of ∼ 1.2 dB/cm as well as micro-ring resonators with an intrinsic Q-factor of 174,000. Arrayed waveguide gratings operating in the 5.15-5.34 µm range feature low insertion loss and non-uniformity of ∼ 0.9 dB and ∼ 0.6 dB, respectively. The demonstration of the present photonic circuits paves the path toward monolithic fabrication of compact infrared light sources with advanced functionalities beneficial to many chemical sensing and high-power applications.

5.
Proc Natl Acad Sci U S A ; 116(42): 20844-20849, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31575741

RESUMEN

Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-C m H2m+1NH2, with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS2, 1T'-MoTe2, WTe2, WSe2, TaS2, and NbSe2). As a representative example, n-hexylamine (m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP's lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H2 annealing, and organic solvents, but can be removed by certain organic acids.

6.
Opt Lett ; 46(22): 5735-5738, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34780449

RESUMEN

In this Letter, we adapt the direct search method to metasurface optimization. We show that the direct search algorithm, when coupled with deep learning techniques for free-form meta-atom generation, offers a computationally efficient optimization approach for metasurface optics. As an example, we apply the approach to optimization of achromatic metalenses. Taking advantage of the diverse dispersion responses of free-form meta-atoms, metalenses designed using this approach exhibit superior broadband performances compared to their multilevel diffractive counterparts. We further demonstrate an achromatic and wide-field-of-view metalens design.

7.
Opt Lett ; 46(10): 2324-2327, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33988574

RESUMEN

We demonstrate a large-area fabrication process for optical metasurfaces utilizing reusable SiN on Si nanostencils. To improve the yield of the nanostencil fabrication, we partially etch the front-side SiN layer to transfer the metasurface pattern from the resist to the nanostencil membrane, preserving the integrity of the membrane during the subsequent potassium hydroxide etch. To enhance the reliability and resolution of metasurface fabrication using the nanostencil, we spin coat a sacrificial layer of resist to precisely determine the gap between the nanostencil and the metasurface substrate for the subsequent liftoff. 1.5 mm diameter PbTe meta-lenses on ${\rm{Ca}}{{\rm{F}}_2}$ fabricated using nanostencils show diffraction-limited focusing and focusing efficiencies of 42% for a 2 mm focal length lens and 53% for a 4 mm focal length lens. The nanostencils can also be cleaned using chemical cleaning methods for reuse.

8.
Nano Lett ; 20(10): 7429-7437, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32942862

RESUMEN

Wide field-of-view (FOV) optical functionality is crucial for implementation of advanced imaging and image projection devices. Conventionally, wide FOV operation is attained with complicated assembly of multiple optical elements known as "fisheye lenses". Here we present a novel metalens design capable of performing diffraction-limited focusing and imaging over an unprecedented near 180° angular FOV. The lens is monolithically integrated on a one-piece flat substrate and involves only a single layer of metasurface that corrects third-order Seidel aberrations including coma, astigmatism, and field curvature. The metalens further features a planar focal surface, which enables considerably simplified system architectures for applications in imaging and projection. We fabricated the metalens using Huygens meta-atoms operating at 5.2 µm wavelength and experimentally demonstrated aberration-free focusing and imaging over the entire FOV. The design concept is generic and can be readily adapted to different meta-atom geometries and wavelength ranges to meet diverse application demands.

9.
Opt Express ; 28(10): 14963-14972, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403528

RESUMEN

Waveguide-enhanced Raman spectroscopy (WERS) is a promising technique for sensitive and selective detection of chemicals in a compact chip-scale platform. Coupling light on and off the sensor chip with fibers however presents challenges because of the fluorescence and Raman background generated by the pump light in the fibers; as a result all WERS demonstrations to date have used free-space coupling via lenses. We report a packaged, fiber-bonded WERS chip that filters the background on-chip through collection of the backscattered Raman light. The packaged sensor is integrated in a ruggedized flow cell for reliable measurement over arbitrary time periods. We also derive the figures of merit for WERS sensing with the backscattered Raman signal and compare waveguide geometries with respect to their filtering performance and signal to noise ratio.

10.
Opt Express ; 28(21): 31932-31942, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115157

RESUMEN

Metasurfaces have shown promising potentials in shaping optical wavefronts while remaining compact compared to bulky geometric optics devices. The design of meta-atoms, the fundamental building blocks of metasurfaces, typically relies on trial and error to achieve target electromagnetic responses. This process includes the characterization of an enormous amount of meta-atom designs with varying physical and geometric parameters, which demands huge computational resources. In this paper, a deep learning-based metasurface/meta-atom modeling approach is introduced to significantly reduce the characterization time while maintaining accuracy. Based on a convolutional neural network (CNN) structure, the proposed deep learning network is able to model meta-atoms with nearly freeform 2D patterns and different lattice sizes, material refractive indices and thicknesses. Moreover, the presented approach features the capability of predicting a meta-atom's wide spectrum response in the timescale of milliseconds, attractive for applications necessitating fast on-demand design and optimization of a meta-atom/metasurface.

11.
Opt Express ; 27(8): 11152-11159, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31052963

RESUMEN

Single-mode polymer photonics is of significant interest to short-reach data communications, photonic packaging, sensing, and biophotonic light delivery. We report here experimental demonstration of mechanically flexible waveguides fabricated by using commercial off-the-shelf biocompatible polymers that claim a record low propagation loss of 0.11 dB/cm near 850 nm wavelength. We also show the excellent flexibility of the free-standing waveguides which can withstand repeated deformation cycles at millimeter bending radius without compromising their low-loss characteristics. High-performance passive optical components, such as waveguide Y-branches, multi-mode interferometers (MMIs), and waveguide crossings are also realized using the polymer photonics platform.

12.
Opt Express ; 27(10): 13781-13792, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31163837

RESUMEN

We report on the design, fabrication and testing of three types of coupling structures for hybrid chalcogenide glass Ge23Sb7S70-Silicon (GeSbS-Si) photonic integrated circuit platforms. The first type is a fully etched GeSbS grating coupler defined directly in the GeSbS film. Coupling losses of 5.3 dB and waveguide-to-waveguide back-reflections of 3.4% were measured at a wavelength of 1553 nm. Hybrid GeSbS-to-Si butt couplers and adiabatic couplers transmitting light between GeSbS and Si single-mode waveguides were further developed. The hybrid butt couplers (HBCs) feature coupling losses of 2.7 dB and 9.2% back-reflection. The hybrid adiabatic couplers (HACs) exhibit coupling losses of 0.7 dB and negligible back-reflection. Both HBCs and HACs have passbands exceeding the 100 nm measurement range of the test setup. GeSbS grating couplers and GeSbS-to-Si waveguide couplers can be co-fabricated in the same process flow, providing, for example, a means to first couple high optical power levels required for nonlinear signal processing directly into GeSbS waveguides and to later transition into Si waveguides after attenuation of the pump. Moreover, GeSbS waveguides and HBC transitions have been fabricated on post-processed silicon photonics chips obtained from a commercially available foundry service, with a previously deposited 2 µm thick top waveguide cladding. This fabrication protocol demonstrates the compatibility of the developed integration scheme with standard silicon photonics technology with a complete back-end-of-line process.

13.
Opt Lett ; 44(13): 3274-3277, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31259939

RESUMEN

A spectrum splitter based on micro-prism arrays is demonstrated for laterally arrayed multi-junction concentrator photovoltaic modules. The conjugate micro-optics design delivers high-transmission, efficient spectrum splitting with minimum aberration, a low profile, and low-cost fabrication, thus allowing large-scale production of micro-concentrator photovoltaic modules. A dispersive optic prototype based on a four-prism design is fabricated and characterized through outdoor measurements showing excellent agreement with our design model.

14.
Opt Lett ; 44(20): 5009-5012, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31613250

RESUMEN

We demonstrated a class of highly nonlinear hybrid waveguide structures based on infiltration of As2S3 chalcogenide glass into silicon slot waveguides. The nonlinear properties of the hybrid waveguides were precisely quantified via a bidirectional top-hat D-scan method, enabling a direct comparison between properties measured using different device geometries. We experimentally demonstrate hybrid As2S3-Si slot waveguides with a two-photon absorption (TPA) figure of merit exceeding 2 at near infrared wavelengths. These waveguides largely satisfy the critical criterion for efficient nonlinear integrated photonics (FOMTPAwg>1), allowing phase shifts greater than π with minimal overall losses. These results pave the way for efficient and robust ultrafast all-optical devices and circuits in large-scale silicon photonics technology.

15.
Opt Lett ; 43(1): 94-97, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29328204

RESUMEN

In this Letter, we propose a broadband, nonvolatile on-chip switch design in the telecommunication C-band with record low loss and crosstalk. The unprecedented device performance builds on: 1) a new optical phase change material (O-PCM) Ge2Sb2Se4Te1 (GSST), which exhibits significantly reduced optical attenuation compared to traditional O-PCMs, and 2) a nonperturbative design that enables low-loss device operation beyond the classical figure-of-merit (FOM) limit. We further demonstrate that the 1-by-2 and 2-by-2 switches can serve as basic building blocks to construct nonblocking and nonvolatile on-chip switching fabric supporting arbitrary numbers of input and output ports.

16.
Opt Lett ; 42(3): 587-590, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28146534

RESUMEN

Understanding radiation damage is of significant importance for devices operating in radiation-harsh environments. In this Letter, we present a systematic study on gamma radiation effects in amorphous silicon and silicon nitride guided wave devices. It is found that gamma radiation increases the waveguide modal effective indices by as much as 4×10-3 in amorphous silicon and 5×10-4 in silicon nitride at 10 Mrad dose. This Letter further reveals that surface oxidation and radiation-induced densification account for the observed index change.

17.
Opt Lett ; 41(13): 3090-3, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27367109

RESUMEN

Low-loss waveguides constitute an important building block for integrated photonic systems. In this work, we investigated low-loss photonic device fabrication in Ge23Sb7S70 chalcogenide glass using electron beam lithography followed by plasma dry etching. High-index-contrast waveguides with a low propagation loss of 0.5 dB/cm and microdisk resonators with an intrinsic quality factor (Q-factor) of 1.2×106 were demonstrated. Both figures represent, to the best of our knowledge, the best low-loss results reported thus far in submicrometer single-mode chalcogenide glass devices.

18.
Opt Lett ; 40(10): 2377-80, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26393744

RESUMEN

Optical resonators with high-quality factors (Q-factor) constitute the main building block for many photonic devices capitalizing on light-matter interactions, ranging from light emitters to biochemical sensors. While a high Q-factor enhances light-matter interactions, it also limits the device operation bandwidth. Here we propose and numerically analyze a generic coupling scheme to overcome the apparent trade-off. By using an orthogonal grating, broadband optical coupling into high-Q cavities of diverse geometric configurations can be achieved. As an example, the approach is applied to demonstrate over a 28-fold optical absorption enhancement across a 150 nm band around 900 nm wavelength in single-layer graphene embedded inside a Fabry-Perot cavity.

19.
Opt Express ; 22 Suppl 4: A1197-202, 2014 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24978082

RESUMEN

In this paper, we examine the optical loss mechanisms and mitigation strategies in classical photovoltaic light trapping structures consisting of diffractive gratings integrated with a backside reflector, which couple normal incident solar radiation into guided modes in solar cells to enhance optical absorption. Parasitic absorption from metal or dielectric backside reflectors is identified to be a major loss contributor in such light trapping structures. We elucidate the optical loss mechanism based on the classical coupled mode theory. Further, a spacer design is proposed and validated through numerical simulations to significantly suppress the parasitic loss and improve solar cell performance.

20.
Sci Technol Adv Mater ; 15(1): 014603, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27877641

RESUMEN

In this article, we review our recent work on mid-infrared (mid-IR) photonic materials and devices fabricated on silicon for on-chip sensing applications. Pedestal waveguides based on silicon are demonstrated as broadband mid-IR sensors. Our low-loss mid-IR directional couplers demonstrated in SiN x waveguides are useful in differential sensing applications. Photonic crystal cavities and microdisk resonators based on chalcogenide glasses for high sensitivity are also demonstrated as effective mid-IR sensors. Polymer-based functionalization layers, to enhance the sensitivity and selectivity of our sensor devices, are also presented. We discuss the design of mid-IR chalcogenide waveguides integrated with polycrystalline PbTe detectors on a monolithic silicon platform for optical sensing, wherein the use of a low-index spacer layer enables the evanescent coupling of mid-IR light from the waveguides to the detector. Finally, we show the successful fabrication processing of our first prototype mid-IR waveguide-integrated detectors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA