Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Chemistry ; 30(32): e202400071, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38570194

RESUMEN

Chiral Metal-Organic Frameworks (CMOFs) are a rapidly growing field reflecting their potential as selective and sensitive chemical sensors for chiral analytes. The highly tuneable nature of CMOFs enables the size, shape, and non-covalent interactions to be optimised towards specific analytes to engender strong intermolecular interactions and sensing responses. While CMOFs as chiral chemical sensor devices have been explored with electrochemical methods including differential pulse voltammetry (DPV), bipolar and chemiresistive sensing techniques, the CMOFs as chiral chemical sensors using spectroscopic methods has received significantly less attention. This review examines the synthesis of CMOFs for chemical sensors with spectroscopic methods such as photoluminescence, circular dichroism, and solid-state nuclear magnetic resonance with a view towards their incorporation into chemical sensor devices. Future directions of the field are highlighted for the generation of functional devices.

2.
Angew Chem Int Ed Engl ; : e202412097, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136339

RESUMEN

A sulfonated tris(1-phenylpyrazolato)iridium(III) complex ([Ir(sppz)3]3-) serves as a proof-of-concept non-emissive enhancer of the widely used ECL detection system of tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)3]2+) with tri-n-propylamine (TPrA) co-reactant, acting through electrocatalysis of TPrA oxidation and efficient chemi-excitation of the luminophore. Using self-interference ECL spectroscopy, we show that the enhancer extends diffusion of the required electrogenerated precursors from the electrode surface. Previously reported enhancement through these pathways has been confounded by the inherent ECL of the enhancer, but the increase in [Ru(bpy)3]2+ ECL intensity using [Ir(sppz)3]3- was obtained without its concomitant emission. The most prominent enhancement (11-fold) occurred at low potentials associated with the 'indirect' co-reactant ECL pathway, which translated to between 2- and 6-fold enhancement when the luminophore was immobilised on microbeads as a general model for enhanced ECL assays.

3.
Inorg Chem ; 61(17): 6641-6649, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35442030

RESUMEN

We investigate the effects of a broad array of external stimuli on the structural, spin-crossover (SCO) properties and nature of the elastic interaction within the two-dimensional Hofmann framework material [Fe(cintrz)2Pd(CN)4]·guest (cintrz = N-cinnamalidene 4-amino-1,2,4-triazole; A·guest; guest = 3H2O, 2H2O, and Ø). This framework exhibits a delicate balance between ferro- and antiferro-elastic interaction characters; we show that manipulation of the pore contents across guests = 3H2O, 2H2O, and Ø can be exploited to regulate this balance. In A·3H2O, the dominant antiferroelastic interaction character between neighboring FeII sites sees the low-temperature persistence of the mixed spin-state species {HS-LS} for {Fe1-Fe2} (HS = high spin, LS = low spin). Elastic interaction strain is responsible for stabilizing the {HS-LS} state and can be overcome by three mechanisms: (1) partial (2H2O) or complete (Ø) guest removal, (2) irradiation via the reverse light-induced excited spin-state trapping (LIESST) effect (λ = 830 nm), and (3) the application of external hydrostatic pressure. Combining experimental data with elastic models presents a clear interpretation that while guest molecules cause a negative chemical pressure, they also have consequences for the elastic interactions between metals beyond the simple chemical pressure picture typically proposed.

4.
Chemistry ; 27(16): 5136-5141, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33543525

RESUMEN

Foremost, practical applications of spin-crossover (SCO) materials require control of the nature of the spin-state coupling. In existing SCO materials, there is a single, well-defined dimensionality relevant to the switching behavior. A new material, consisting of 1,2,4-triazole-based trimers coordinated into 1D chains by [Au(CN)2 ]- and spaced by anions and exchangeable guests, underwent SCO defined by elastic coupling across multiple dimensional hierarchies. Detailed structural, vibrational, and theoretical studies conclusively confirmed that intra-trimer coupling was an order of magnitude greater than the intramolecular coupling, which was an order of magnitude greater than intermolecular coupling. As such, a clear hierarchy on the nature of elastic coupling in SCO materials was ascertained for the first time, which is a necessary step for the technological development of molecular switching materials.

5.
Faraday Discuss ; 231(0): 152-167, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34251000

RESUMEN

Electroactive metal-organic frameworks (MOFs) are an attractive class of materials owing to their multifunctional 3-dimensional structures, the properties of which can be modulated by changing the redox states of the components. In order to realise both fundamental and applied goals for these materials, a deeper understanding of the structure-function relationships that govern the charge transfer mechanisms is required. Chemical or electrochemical reduction of the framework [Zn(BPPFTzTz)(tdc)]·2DMF, hereafter denoted ZnFTzTz (where BPPFTzTz = 2,5-bis(3-fluoro-4-(pyridin-4-yl)phenyl)thiazolo[5,4-d]thiazole), generates mixed-valence states with optical signatures indicative of through-space intervalence charge transfer (IVCT) between the cofacially stacked ligands. Fluorination of the TzTz ligands influences the IVCT band parameters relative to the unsubstituted parent system, as revealed through Marcus-Hush theory analysis and single crystal UV-Vis spectroscopy. Using a combined experimental, theoretical and density functional theory (DFT) analysis, important insights into the effects of structural modifications, such as ligand substitution, on the degree of electronic coupling and rate of electron transfer have been obtained.

6.
Inorg Chem ; 60(17): 13658-13668, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34428031

RESUMEN

A remarkably flexible, multifunctional, 2D coordination polymer exhibiting an unprecedented mode of reversible mechanical motion, enabling pores to open and close, is reported. Such multifunctional materials are highly sought after, owing to the potential to exploit coexisting electronic and mechanical functionalities that underpin useful technological applications such as actuators and ultrasensitive detectors. The coordination polymer, of composition Mn(F4TCNQ)(py)2 (F4TCNQ = 2,3,5,6-tetrafluoro-7,7,8,8-tetracycanoquinodimethane; py = pyridine), consists of Mn(II) centers bridged by F4TCNQ dianions and coordinated by py molecules that extend above and below the 2D network. Exposure of Mn(F4TCNQ)(py)2, in its collapsed state, to carbon dioxide results in a pore-opening process at a threshold pressure for a given temperature. In addition to carbon dioxide, a variety of volatile guests may be incorporated into the pores, which are lined with electron-rich F4TCNQ dianions. The inclusion of electron-deficient guests such as 1,4-benzoquinone, nitrobenzene, maleic anhydride, and iodine into the pores is accompanied by a striking color change associated with a new host-guest charge-transfer interaction and an improvement in the semiconductor behavior, with the iodine adduct showing an increase in conductivity of almost 5 orders of magnitude. Experimental and density functional theory calculations on this remarkable multifunctional material demonstrate a reduction in the optical band gap with increasing electron affinity of the guest.

7.
Chemistry ; 25(20): 5222-5234, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30729591

RESUMEN

Reaction of the chloranilate dianion with Y(NO3 )3 in the presence of Et4 N+ in the appropriate proportions results in the formation of (Et4 N)[Y(can)2 ], which consists of anionic square-grid coordination polymer sheets with interleaved layers of counter-cations. These counter-cations, which serve as squat pillars between [Y(can)2 ] sheets, lead to alignment of the square grid sheets and the subsequent generation of square channels running perpendicular to the sheets. The crystals are found to be porous and retain crystallinity following cycles of adsorption and desorption. This compound exhibits a high affinity for volatile guest molecules, which could be identified within the framework by crystallographic methods. In situ neutron powder diffraction indicates a size-shape complementarity leading to a strong interaction between host and guest for CO2 and CH4 . Single-crystal X-ray diffraction experiments indicate significant interactions between the host framework and discrete I2 or Br2 molecules. A series of isostructural compounds (cat)[MIII (X-an)2 ] with M=Sc, Gd, Tb, Dy, Ho, Er, Yb, Lu, Bi or In, cat=Et4 N, Me4 N and X-an=chloranilate, bromanilate or cyanochloranilate bridging ligands have been generated. The magnetic properties of representative examples (Et4 N)[Gd(can)2 ] and (Et4 N)[Dy(can)2 ] are reported with normal DC susceptibility but unusual AC susceptibility data noted for (Et4 N)[Gd(can)2 ].

8.
Inorg Chem ; 58(10): 7044-7053, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31034214

RESUMEN

Semiquinoid radical bridging ligands are capable of mediating exceptionally strong magnetic coupling between spin centers, a requirement for the design of high-temperature magnetic materials. We demonstrate the ability of sulfur donors to provide much stronger coupling relative to their oxygen congeners in a series of dinuclear complexes. Employing a series of chalcogen donor-based bis(bidentate) benzoquinoid bridging ligands, the series of complexes [(TPyA)2Cr2(RL4-)]2+ (OLH4 = 1,2,4,5-tetrahydroxybenzene, OSLH4 = 1,2-dithio-4,5-dihydroxybenzene, SLH4 = 1,2,4,5-tetrathiobenzene, TPyA = tris(2-pyridylmethyl)amine) was synthesized. Variable-temperature dc magnetic susceptibility data reveal the presence of weak antiferromagnetic superexchange coupling between CrIII centers in these complexes, with exchange constants of J = -2.83(3) (OL4-), -2.28(5) (OSL4-), and -1.80(2) (SL4-) cm-1. Guided by cyclic voltammetry and spectroelectrochemical measurements, chemical one-electron oxidation of these complexes gives the radical-bridged species [(TPyA)2Cr2(RL3-•)]3+. Variable-temperature dc susceptibility measurements in these complexes reveal the presence of strong antiferromagnetic metal-semiquinoid radical coupling, with exchange constants of J = -352(10) (OL3-•), - 401(8) (OSL3-•), and -487(8) (SL3-•) cm-1. These results provide the first measurement of magnetic coupling between metal ions and a thiosemiquinoid radical, and they demonstrate the value of moving from O to S donors in radical-bridged metal ions in the design of magnetic molecules and materials.

9.
J Am Chem Soc ; 140(21): 6622-6630, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29727176

RESUMEN

Understanding the nature of charge transfer mechanisms in 3-dimensional metal-organic frameworks (MOFs) is an important goal owing to the possibility of harnessing this knowledge to design electroactive and conductive frameworks. These materials have been proposed as the basis for the next generation of technological devices for applications in energy storage and conversion, including electrochromic devices, electrocatalysts, and battery materials. After nearly two decades of intense research into MOFs, the mechanisms of charge transfer remain relatively poorly understood, and new strategies to achieve charge mobility remain elusive and challenging to experimentally explore, validate, and model. We now demonstrate that aromatic stacking interactions in Zn(II) frameworks containing cofacial thiazolo[5,4- d]thiazole (TzTz) units lead to a mixed-valence state upon electrochemical or chemical reduction. This through-space intervalence charge transfer (IVCT) phenomenon represents a new mechanism for charge transfer in MOFs. Computational modeling of the optical data combined with application of Marcus-Hush theory to the IVCT bands for the mixed-valence framework has enabled quantification of the degree of charge transfer using both in situ and ex situ electro- and spectro-electrochemical methods. A distance dependence for the through-space electron transfer has also been identified on the basis of experimental studies and computational calculations. This work provides a new window into electron transfer phenomena in 3-dimensional coordination space, of relevance to electroactive MOFs where new mechanisms for charge transfer are highly sought after, and to understanding biological light-harvesting systems where through-space mixed-valence interactions are operative.

10.
Angew Chem Int Ed Engl ; 56(20): 5465-5470, 2017 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-28402592

RESUMEN

A major challenge is the development of multifunctional metal-organic frameworks (MOFs), wherein magnetic and electronic functionality can be controlled simultaneously. Herein, we rationally construct two 3D MOFs by introducing the redox active ligand tetra(4-pyridyl)tetrathiafulvalene (TTF(py)4 ) and spin-crossover FeII centers. The materials exhibit redox activity, in addition to thermally and photo-induced spin crossover (SCO). A crystal-to-crystal transformation induced by I2 doping has also been observed and the resulting intercalated structure determined. The conductivity could be significantly enhanced (up to 3 orders of magnitude) by modulating the electronic state of the framework via oxidative doping; SCO behavior was also modified and the photo-magnetic behavior was switched off. This work provides a new strategy to tune the spin state and conductivity of framework materials through guest-induced redox-state switching.

11.
Inorg Chem ; 55(15): 7270-80, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27419690

RESUMEN

An investigation of the redox-active tris[4-(pyridin-4-yl)phenyl]amine (NPy3) ligand in the solution state and upon its incorporation into the solid-state metal-organic framework (MOF) [Zn(NPy3)(NO2)2·xMeOH·xDMF]n (MeOH = methanol and DMF = N,N-dimethylformamide) was conducted using in situ UV/vis/near-IR, electron paramagentic resonance (EPR), and fluorescence spectroelectrochemical experiments. Through this multifaceted approach, the properties of the ligand and framework were elucidated and quantified as a function of the redox state of the triarylamine core, which can undergo a one-electron oxidation to its radical cation. The use of pulsed EPR experiments revealed that the radical generated was highly delocalized throughout the entire ligand backbone. This combination of techniques provides comprehensive insight into electronic delocalization in a framework system and demonstrates the utility of in situ spectroelectrochemical methods in assessing electroactive MOFs.

12.
Inorg Chem ; 55(9): 4606-15, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27070295

RESUMEN

The synthesis of a π-extended bridging ligand with both redox-active tetrathiafulvalene (TTF) and 1,10-phenanthroline (phen) units, namely, bis(1,10-phenanthro[5,6-b])tetrathiafulvalene (BPTTF), was realized via a self-coupling reaction. Using this ligand and Ru(tbbpy)2Cl2 (tbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine), the dinuclear ruthenium(II) compound [{Ru(tbbpy)2}2(BPTTF)](PF6)4 (1) has been obtained by microwave-assisted synthesis. Structural characterization of 1 revealed a crossed arrangement of the TTF moieties on adjacent dimers within the crystal structure. The optical and redox properties of 1 were investigated using electrochemical, spectroelectrochemical, electron paramagnetic resonance (EPR), and absorption spectroscopic studies combined with theoretical calculations. One exhibits a rich electrochemical behavior owing to the multiple redox-active centers. Interestingly, both the ligand BPTTF and the ruthenium compound 1 are EPR-active in the solid state owing to intramolecular charge-transfer processes. The results demonstrate that the TTF-annulated bis(phen) ligand is a promising bridging ligand to construct oligomeric or polymeric metal complexes with multiple redox-active centers.

13.
Phys Chem Chem Phys ; 17(17): 11252-9, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25835336

RESUMEN

Two organic polymers containing alternating electron donating triarylamine and electron accepting thiazolo[5,4-d]thiazole (TzTz) moieties have been synthesized and their redox states investigated. When donor and acceptor units are proximal (polymer )1, electron density is delocalized, leading to a small electrical and optical band gap; these are larger with the inclusion of an adjoining alkynyl-phenyl bridge (polymer 2), where electron density is more localized due to the rotation of the monomer units. As a result, 1 and 2 display different optical and fluorescence properties in their neutral states. Upon chemical and electrochemical redox reactions, radicals form in both 1 and 2, yielding magnetic materials that display temperature-independent paramagnetism, attributable to delocalization of radical spins along the polymeric backbones. The ability to convert between diamagnetic and paramagnetic states upon chemical oxidation and/or reduction allows for the materials to display switchable magnetism and fluorescence, imparting multifunctionality to these solid-state purely organic materials.

14.
Chemistry ; 20(52): 17597-605, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25346539

RESUMEN

A ligand containing the thiazolo[5,4-d]thiazole (TzTz) core (acceptor) with terminal triarylamine moieties (donors), N,N'-(thiazolo[5,4-d]thiazole-2,5-diylbis(4,1-phenylene))bis(N-(pyridine-4-yl)pyridin-4-amine (1), was designed as a donor-acceptor system for incorporation into electronically active metal-organic frameworks (MOFs). The capacity for the ligand to undergo multiple sequential oxidation and reduction processes was examined using UV/Vis-near-infrared spectroelectrochemistry (UV/Vis-NIR SEC) in combination with DFT calculations. The delocalized nature of the highest occupied molecular orbital (HOMO) was found to inhibit charge-transfer interactions between the terminal triarylamine moieties upon oxidation, whereas radical species localized on the TzTz core were formed upon reduction. Conversion of 1 to diamagnetic 2+ and 4+ species resulted in marked changes in the emission spectra. Incorporation of this highly delocalized multi-electron donor-acceptor ligand into a new two-dimensional MOF, [Zn(NO3 )2 (1)] (2), resulted in an inhibition of the oxidation processes, but retention of the reduction capability of 1. Changes in the electrochemistry of 1 upon integration into 2 are broadly consistent with the geometric and electronic constraints enforced by ligation.

15.
Chem Sci ; 15(32): 13074-13081, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39148789

RESUMEN

The synthesis and ion-pair binding properties of a heteroditopic [2]catenane receptor exhibiting highly potent and selective recognition of sodium halide salts are described. The receptor design consists of a bidentate halogen bonding donor motif for anion binding, as well as a di(ethylene glycol)-derived cation binding pocket which dramatically enhances metal cation affinity over previously reported homo[2]catenane analogues. 1H NMR cation, anion and ion-pair binding studies reveal significant positive cooperativity between the cation and anion binding events in which cation pre-complexation to the catenane subsequently 'switches-on' anion binding. Notably, the heteroditopic catenane displayed impressive selectivity for sodium halide recognition over the corresponding potassium halides. We further demonstrate that the catenane is capable of extracting solid alkali metal salts into organic media. Crucially, the observed solution phase binding selectivity for sodium halides translates to superior functional extraction capabilities of these salts relative to potassium halides, overcoming the comparatively higher lattice enthalpies NaX > KX dictated by the smaller alkali metal sodium cation. This is further exemplified in competitive solid-liquid experiments which revealed the exclusive extraction of sodium halide salts from solid mixtures of sodium and potassium halide salts.

16.
Analyst ; 137(1): 82-6, 2012 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21975428

RESUMEN

A simple colorimetric method for the detection of copper ions in water is described. This method is based on the 'click' copper(I)-catalyzed azide-alkyne cycloaddition reaction and its use in promoting the aggregation of azide-tagged gold nanoparticles by a dialkyne cross-linker is described. Nanoparticle cross-linking, evidenced as a colour change, is used for the detection of copper ions. The lowest detected concentration by the naked eye was 1.8 µM, with the response linear with log(concentration) between 1.8-200 µM. The selectivity relative to other potentially interfering ions was evaluated.


Asunto(s)
Técnicas Biosensibles/métodos , Química Clic/métodos , Cobre/análisis , Oro/química , Nanopartículas del Metal/química , Alquinos/química , Azidas/química , Técnicas Biosensibles/instrumentación , Catálisis , Cationes Bivalentes/análisis , Química Clic/instrumentación , Colorimetría/métodos , Reactivos de Enlaces Cruzados/química , Ciclización , Límite de Detección , Microscopía Electrónica de Rastreo/métodos , Abastecimiento de Agua/análisis , Abastecimiento de Agua/normas
17.
Chem Commun (Camb) ; 58(28): 4512-4515, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35302117

RESUMEN

A fluorescent, chiral coordination polymer (CP) with a novel topology has been synthesised using a dipyridyl ligand derived from 1,1'-bi-2-naphthol (BINOL). Enantioselectivity ratios up to 2.61 were obtained in fluorescence sensing studies with chiral analytes.


Asunto(s)
Polímeros , Ligandos , Espectrometría de Fluorescencia , Estereoisomerismo
18.
Chem Sci ; 13(11): 3273-3280, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35414869

RESUMEN

Visible light induced singlet nucleophilic carbenes undergo rapid [2 + 1]-cycloaddition with tethered olefins to afford unique bicyclo[3.1.0]hexane and bicyclo[4.1.0]heptane scaffolds. This cyclopropanation process requires only visible light irradiation to proceed, circumventing the use of exogenous (photo)catalysts, sensitisers or additives and showcases a vastly underexplored mode of reactivity for nucleophilic carbenes in chemical synthesis. The discovery of additional transformations including a cyclopropanation/retro-Michael/Michael cascade process to afford chromanones and a photochemical C-H insertion reaction are also described.

19.
Chem Commun (Camb) ; 57(64): 7938-7941, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34286753

RESUMEN

Studies into the Cp*Rh(iii)-catalysed hydroarylation of alkenes with aryl acyl silanes led to the discovery of a new synthetic strategy to access unique silicon derived indene frameworks. Rather than protodemetalation of the metal enolate formed following insertion of an alkene into the aryl C-H bond, intramolecular aldol condensation of the acyl silane occurred to generate a series of 2-formyl- and 2-acetyl-3-silyl indenes. This represents only the second example of rhodium-catalysed C-H functionalisation employing acyl silanes as weakly coordinating directing groups and the intramolecular aldol condensation strategy was extended to access analogous silicon derived benzofurans.

20.
Chem Asian J ; 16(8): 890-901, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33709619

RESUMEN

Coordination polymers and metal-organic frameworks are prime candidates for general chemical sensing, but the use of these porous materials as chiral probes is still an emerging field. In the last decade, they have found application in a range of chiral analysis methods, including liquid- and gas-phase chromatography, circular dichroism spectroscopy, fluorescence sensing, and NMR spectroscopy. In this minireview, we examine recent works on coordination polymers as chiral sensors and their enantioselective host-guest chemistry, while highlighting their potential for application in different settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA