Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 57(11): 2816-2821, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29285842

RESUMEN

Achieving homogeneous dispersion of nanoporous fillers within membrane architectures remains a great challenge for mixed-matrix membrane (MMMs) technology. Imparting solution processability of nanoporous materials would help advance the development of MMMs for membrane-based gas separations. A mechanochemically assisted oxidative coupling polymerization strategy was used to create a new family of soluble nanoporous polymer networks. The solid-state ball-milling method affords inherent molecular weight control over polymer growth and therefore provides unexpected solubility for the resulting nanoporous frameworks. MMM-based CO2 /CH4 separation performance was significantly accelerated by these new soluble fillers. We anticipate this facile method will facilitate new possibilities for the rational design and synthesis of soluble nanoporous polymer networks and promote their applications in membrane-based gas separations.

2.
ACS Appl Mater Interfaces ; 16(12): 15273-15285, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38482600

RESUMEN

Zeolitic-imidazolate framework-8 (ZIF-8), composed of a zinc center tetrahedrally coordinated with 2-methylimidazolate linkers, has garnered extensive attention as a selective filler for propylene-selective mixed-matrix membranes (MMMs). Recently, we reported an innovative and scalable MMM fabrication approach, termed "phase-inversion in sync with in situ MOF formation" (PIMOF), aimed at addressing the prevailing challenges in MMM processing. In this study, we intend to investigate the effect of additives, specifically sodium formate and 1,4-butanediol, on the modification of ZIF-8 filler formation within the polymer matrix in order to further improve the separation performance of the asymmetric MMMs prepared by the PIMOF. Remarkably, MMMs prepared with sodium formate as an additive in the coagulation bath exhibited an unprecedented C3H6/C3H8 separation factor of 222.5 ± 1.8 with a C3H6 permeance of 10.1 ± 0.3 GPU, surpassing that of MMMs prepared without additives (a C3 separation factor of 57.7 ± 11.2 with a C3 permeance of 22.5 ± 4.5 GPU). Our computational work complements the experimental investigation by studying the effect of ZIF-8 nanoparticle size on the specific surface interaction energy and apertures of ZIF-8. Calculations indicate that by having smaller ZIF-8 nanoparticles, stronger interactions are present with the polymer affecting the aperture of ZIF-8 nanoparticles. This reduction in aperture size is expected to improve selectivity toward propylene by reducing the permeability of propylene. These results represent a significant advancement, surpassing the performance of all previously reported propylene-selective MMMs and most high-quality polycrystalline ZIF-8 membranes. The notably enhanced separation performance primarily arises from the formation of exceedingly small ZIF-8-like particles with an amorphous or poorly crystalline structure, corroborated by our computational work.

3.
ACS Appl Mater Interfaces ; 9(34): 29093-29100, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28792201

RESUMEN

Covalent organic framework (COF) membranes used for selective removal of CO2 were believed as an efficient and low-cost solution to energy and environmental sustainability. In this study, the amide modified COF nanosheet cluster with a 2D structure was facilely prepared through solid reaction, exhibiting good adsorption-based CO2 selectivity (223 at 273 K and 90 at 298 K) toward N2. Remarkably, the mixed matrix membrane (MMM) that consists of a lesser amount of COF filler (1 wt %) shows promising CO2/N2 gas selectivity (∼64). In addition, the competitive adsorption prompts the selectivity to ∼72 under an equimolar CO2/N2 mixture, which surpasses the values of all reported COF membranes. It is worth to note that the binary gas separation is stable during 120 h.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA