Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 25(43): 435602, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25297725

RESUMEN

The synergy between Cu and Pd makes Cu-Pd bimetallic nanocrystals interesting materials for investigation. The scarcity of shapes of Cu-Pd bimetallic nanocrystals motivated us to explore highly branched structures, which may promote a wide range of applications. In this communication, we report a facile synthesis of Cu-Pd bimetallic multipods (19.2 ± 1.2 nm), on branches of which some high-index facets were exposed. Modification of reaction parameters concerning capping agents and reductant led to the formation of other shapes, including sphere-like nanocrystals (SNCs). When loaded onto TiO2, the as-prepared Cu-Pd bimetallic multipods exhibited excellent catalytic activity for the oxidation of cyclohexane by hydrogen peroxide and higher selectivity towards cyclohexanone than monometallic catalysts and SNCs/TiO2.

2.
J Am Chem Soc ; 135(13): 5144-51, 2013 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-23473406

RESUMEN

As a conceptually new class of two-dimensional (2D) materials, the ultrathin nanosheets as inorganic graphene analogues (IGAs) play an increasingly vital role in the new-generation electronics. However, the relatively low electrical conductivity of inorganic ultrathin nanosheets in current stage significantly hampered their conducting electrode applications in constructing nanodevices. We developed the unprecedentedly high electrical conductivity in inorganic ultrathin nanosheets. The hydric titanium disulfide (HTS) ultrathin nanosheets, as a new IGAs, exhibit the exclusively high electrical conductivity of 6.76 × 10(4) S/m at room temperature, which is superior to indium tin oxide (1.9 × 10(4) S/m), recording the best value in the solution assembled 2D thin films of both graphene (5.5 × 10(4) S/m) and inorganic graphene analogues (5.0 × 10(2) S/m). The modified hydrogen on S-Ti-S layers contributes additional electrons to the TiS2 layered frameworks, rendering the controllable electrical conductivity as well as the electron concentrations. Together with synergic advantages of the excellent mechanical flexibility, high stability, and stamp-transferrable properties, the HTS thin films show promising capability for being the next generation conducting electrode material in the nanodevice fields.

3.
Inorg Chem ; 49(16): 7217-9, 2010 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-20690727

RESUMEN

Copper oxide nanowires and cuprous oxide crystals had been synthesized through gamma-irradiating aqueous CuCl(2)-NaOH-sodium dodecyl sulfate (SDS)-isopropyl alcohol solutions under ambient conditions. The product composition could be changed by modulating the amount of base, NaOH. The morphology of the products could be accurately controlled by altering the amounts of SDS and isopropyl alcohol. A possible formation mechanism was also proposed.

4.
ACS Appl Mater Interfaces ; 8(1): 20-5, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26696468

RESUMEN

Whereas diverse graphene quantum dots (GQDs) with basal planes similar to those of graphene oxide sheets (i.e., GO-GQDs) lack antibacterial property, that prepared by rupturing C60 cage (i.e., C60-GQD) effectively kills Staphylococcus aureus, including its antibiotic-tolerant persisters, but not Bacillus subtilis, Escherichia coli, or Pseudomonas aeruginosa. The observed activity may correlate with a GQD's ability to disrupt bacterial cell envelop. Surface-Gaussian-curvature match between a GQD and a target bacterium may play critical role in the association of the GQD with bacterial cell surface, the initial step for cell envelope disruption, suggesting the importance of both GQDs' source materials and bacterial shape.


Asunto(s)
Antibacterianos/farmacología , Grafito/química , Puntos Cuánticos/química , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microscopía de Fuerza Atómica , Staphylococcus aureus/efectos de los fármacos
5.
Nanoscale ; 7(23): 10490-7, 2015 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-26006089

RESUMEN

"Band gap engineering" in two-dimensional (2D) materials plays an important role in tailoring their physical and chemical properties. The tuning of the band gap is typically achieved by controlling the composition of the semiconductor alloys. However, large-area preparation of 2D alloys remains a major challenge. Here, we report the large-area synthesis of high-quality monolayered MoS2(1-x)Se2x with a size coverage of hundreds of microns using a chemical vapor deposition method. The photoluminescence (PL) spectroscopy results confirm the tunable band gap in MoS2(1-x)Se2x, which is modulated by varying the Se content. Atomic-scale analysis was performed and the chemical composition was characterized using high-resolution scanning transmission electron microscopy and X-ray photoemission spectroscopy. With the introduction of Se into monolayered MoS2, it leads to enhanced catalytic activity in an electrochemical reaction for hydrogen generation, compared to monolayered MoS2 and MoSe2. It is promising as a potential alternative to expensive noble metals.

6.
Nat Commun ; 4: 2431, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24026224

RESUMEN

Two-dimensional materials have been an ideal material platform for constructing flexible ultrathin-film supercapacitors, offering great advantages of flexibility, ultra-thinness and even transparency. Exploring new two-dimensional pseudocapacitive materials with high electrochemical activity is needed to achieve flexible ultrathin-film supercapacitors with higher energy densities. Here we report an inorganic graphene analogue, α1-vanadyl phosphate ultrathin nanosheets with less than six atomic layers, as a promising material to construct a flexible ultrathin-film pseudocapacitor in all-solid-state. The material exhibits a high potential plateau of ~ 1.0 V in aqueous solutions, approaching the electrochemical potential window of water (1.23 V). The as-established flexible supercapacitor achieves a high redox potential (1.0 V) and a high areal capacitance of 8,360.5 µF cm(-2), leading to a high energy density of 1.7 mWh cm(-2) and a power density of 5.2 mW cm(-2).

7.
Nano Lett ; 8(5): 1318-22, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18393469

RESUMEN

Since the discovery of WS2 nanotubes in 1992 ( Nature 1992, 360, 444), there have been significant research efforts to synthesize nanotubes and fullerene-like hollow nanoparticles (HNPs) of inorganic materials ( Nat. Nanotechnol. 2006, 1, 103) due to their potential applications as solid lubrications ( J. Mater. Chem. 2005, 15, 1782), chemical sensing ( Adv. Funct. Mater. 2006, 16, 371), drug delivering ( J. Am. Chem. Soc. 2005, 127, 7316), catalysis ( Adv. Mater. 2006, 18, 2561), or quantum harvesting ( Acc. Chem. Res. 2006, 39, 239). Nanotubes can be produced either by rolling up directly from layer compounds ( Nature 2001, 410, 168) or through other mechanisms ( Adv. Mater. 2004, 16, 1497) such as template growth ( Nature 2003, 422, 599) and decomposition ( J. Am. Chem. Soc. 2001, 123, 4841). The Kirkendall effect, a classical phenomenon in metallurgy ( Trans. AIME 1947, 171, 130), was recently exploited to fabricate hollow 0-D nanocrystals ( Science 2004, 304, 711) as well as 1-D nanotubes ( Nat. Mater. 2006, 5, 627). Although the dimension of resulting hollow nanostructures depends on precursors, the hollow nanomaterials can also be organized into various dimensional nanostructures spontaneously or induced by an external field. In this letter, we report, for the first time, the UV-light induced fabrication of the ends-closed 1-D CdCl2 nanotubes from 0-D CdSe solid nanocrystals through the Kirkendall effect and the head-to-end assembled process. Our results demonstrate the possibility to control the dimension (0-D to 1-D) and the configuration (solid to hollow) of nanostructures simultaneously and have implications in fabricating hollow nano-objects from zero-dimensional to multidimensional.


Asunto(s)
Cloruro de Cadmio/química , Compuestos de Cadmio/química , Cristalización/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Compuestos de Selenio/química , Telurio/química , Cloruro de Cadmio/efectos de la radiación , Compuestos de Cadmio/efectos de la radiación , Sustancias Macromoleculares/química , Sustancias Macromoleculares/efectos de la radiación , Ensayo de Materiales , Conformación Molecular/efectos de la radiación , Nanoestructuras/efectos de la radiación , Nanotecnología/métodos , Tamaño de la Partícula , Compuestos de Selenio/efectos de la radiación , Propiedades de Superficie/efectos de la radiación , Telurio/efectos de la radiación , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA