Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 18(4): 384-389, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30858569

RESUMEN

The solid-electrolyte interphase (SEI) is pivotal in stabilizing lithium metal anodes for rechargeable batteries. However, the SEI is constantly reforming and consuming electrolyte with cycling. The rational design of a stable SEI is plagued by the failure to control its structure and stability. Here we report a molecular-level SEI design using a reactive polymer composite, which effectively suppresses electrolyte consumption in the formation and maintenance of the SEI. The SEI layer consists of a polymeric lithium salt, lithium fluoride nanoparticles and graphene oxide sheets, as evidenced by cryo-transmission electron microscopy, atomic force microscopy and surface-sensitive spectroscopies. This structure is different from that of a conventional electrolyte-derived SEI and has excellent passivation properties, homogeneity and mechanical strength. The use of the polymer-inorganic SEI enables high-efficiency Li deposition and stable cycling of 4 V Li|LiNi0.5Co0.2Mn0.3O2 cells under lean electrolyte, limited Li excess and high capacity conditions. The same approach was also applied to design stable SEI layers for sodium and zinc anodes.

2.
Zhongguo Yi Liao Qi Xie Za Zhi ; 42(5): 368-371, 2018 Sep 30.
Artículo en Zh | MEDLINE | ID: mdl-30358354

RESUMEN

The reuse of high-cost single-use medical devices (SUD) is permitted in many countries, such as the United States, Germany and the United Kingdom, but strict regulatory requirements must be met. In addition to regulatory policies and regulations, such as market access mode and special requirements on Good Manufacture Practice (GMP), there are strict technical requirements on the potential risk control and quality assurance system. Therefore, effective risk assessment and risk control technology are the keys to ensure effective quality control and safe use of SUDs. In this article, based on analyzing the technological requirements of the national regulatory on SUDs in the United States, Germany and Britain, and combined with the review from latest relevant literature, to discuss the strategies of how to carry out scientific risk assessment. Some risk control technologies on the reuse of SUDs are introduced, which will provide support for the further study on risk control strategies and regulatory decisions for the reuse of SUDs in China.


Asunto(s)
Legislación de Dispositivos Médicos , Control de Calidad , Medición de Riesgo , China , Comercio , Europa (Continente) , Estados Unidos , United States Food and Drug Administration
3.
J Am Chem Soc ; 139(43): 15288-15291, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28984129

RESUMEN

The lithium (Li) metal anode suffers severe interfacial instability from its high reactivity toward liquid electrolytes, especially carbonate-based electrolytes, resulting in poor electrochemical performance of batteries that use 4 V high-capacity cathodes. We report a new skin-grafting strategy that stabilizes the Li metal-liquid electrolyte interface by coating the Li metal surface with poly((N-2,2-dimethyl-1,3-dioxolane-4-methyl)-5-norbornene-exo-2,3-dicarboximide), a chemically and electrochemically active polymer layer. This layer, composed of cyclic ether groups with a stiff polycyclic main chain, serves as a grafted polymer skin on the Li metal anode not only to incorporate ether-based polymeric components into the solid-electrolyte interphase (SEI) but also to accommodate Li deposition/dissolution under the skin in a dendrite/moss-free manner. Consequently, a Li-metal battery employing a Li metal anode with the grafted skin paired with LiNi0.5Co0.2Mn0.3O2 cathode has a 90.0% capacity retention after 400 charge/discharge cycles and a capacity of 1.2 mAh/cm2 in a carbonate-based electrolyte. This proof-of-concept study provides a new direction for regulating the interfacial chemistry of Li metal anodes and for enabling high-performance Li-metal batteries.

4.
J Am Chem Soc ; 139(48): 17359-17367, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29083176

RESUMEN

Li-alloy-based anode materials are very promising for breaking current energy limits of lithium-ion battery technologies. Unfortunately, these materials still suffer from poor solid-electrolyte interphase (SEI) stability, resulting in unsatisfied electrochemical performances. The typical SEI formation method, electrochemical decomposition of electrolytes onto the active material surface, lacks a deliberate control of the SEI functions and structures. Here we propose a general method of manipulating the formation process, chemical composition, and morphology of the SEI for Li-alloy anodes, using Si and Ge nanoparticle anodes as the platform. The SEI was fabricated through a covalent anchoring of multiple functional components onto the active material surface, followed by electrochemical decomposition of the functional components and conventional electrolyte. Click reaction, serving as the covalent anchoring approach, allows an accurate control of the SEI composition and structure at the molecular level through tuning the chemical structure and amount of variety of functional components and provides an intimate contact between the SEI and the Li-alloy material surface contributed by the covalent bonding. The optimized Si nanoparticle SEI, functionalized by a unique combination of diverse components and containing a high concentration of organic components attributed to the preanchored functional components, presented a stable composition and durable morphology during cycling and led to an improved first cycle efficiency of Si nanoparticle anodes and its long cycle life in a full cell. This general method displays potential benefits to construct stable SEIs for other Li-alloy anodes.

5.
Nat Commun ; 10(1): 5586, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31811126

RESUMEN

Silicon-based materials are promising anodes for next-generation lithium-ion batteries, owing to their high specific capacities. However, the huge volume expansion and shrinkage during cycling result in severe displacement of silicon particles and structural collapse of electrodes. Here we report the use of a supremely elastic gel polymer electrolyte to address this problem and realize long-term stable cycling of silicon monoxide anodes. The high elasticity of the gel polymer electrolyte is attributed to the use of a unique copolymer consisting of a soft ether domain and a hard cyclic ring domain. Consequently, the displacement of silicon monoxide particles and volume expansion of the electrode were effectively reduced, and the damage caused by electrode cracking is alleviated. A SiO|LiNi0.5Co0.2Mn0.3O2 cell shows 70.0% capacity retention in 350 cycles with a commercial-level reversible capacity of 3.0 mAh cm-2 and an average Coulombic efficiency of 99.9%.

6.
ACS Nano ; 12(2): 1500-1507, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29376330

RESUMEN

Lithium-sulfur (Li-S) batteries are promising candidates for high-energy storage devices due to high theoretical capacities of both the sulfur cathode and lithium (Li) metal anode. Considerable efforts have been devoted to improving sulfur cathodes. However, issues associated with Li anodes, such as low Coulombic efficiency (CE) and growth of Li dendrites, remain unsolved due to unstable solid-electrolyte interphase (SEI) and lead to poor capacity retention and a short cycling life of Li-S batteries. In this work, we demonstrate a facile and effective approach to fabricate a flexible and robust hybrid SEI layer through co-deposition of aromatic-based organosulfides and inorganic Li salts using poly(sulfur-random-1,3-diisopropenylbenzene) as an additive in an electrolyte. The aromatic-based organic components with planar backbone conformation and π-π interaction in the SEI layers can improve the toughness and flexibility to promote stable and high efficient Li deposition/dissolution. The as-formed durable SEI layer can inhibit dendritic Li growth, enhance Li deposition/dissolution CE (99.1% over 420 cycles), and in turn enable Li-S batteries with good cycling stability (1000 cycles) and slow capacity decay. This work demonstrates a route to address the issues associated with Li metal anodes and promote the development of high-energy rechargeable Li metal batteries.

8.
Nat Commun ; 8(1): 850, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-29021575

RESUMEN

Lithium metal is a promising anode candidate for the next-generation rechargeable battery due to its highest specific capacity (3860 mA h g-1) and lowest potential, but low Coulombic efficiency and formation of lithium dendrites hinder its practical application. Here, we report a self-formed flexible hybrid solid-electrolyte interphase layer through co-deposition of organosulfides/organopolysulfides and inorganic lithium salts using sulfur-containing polymers as an additive in the electrolyte. The organosulfides/organopolysulfides serve as "plasticizer" in the solid-electrolyte interphase layer to improve its mechanical flexibility and toughness. The as-formed robust solid-electrolyte interphase layers enable dendrite-free lithium deposition and significantly improve Coulombic efficiency (99% over 400 cycles at a current density of 2 mA cm-2). A lithium-sulfur battery based on this strategy exhibits long cycling life (1000 cycles) and good capacity retention. This study reveals an avenue to effectively fabricate stable solid-electrolyte interphase layer for solving the issues associated with lithium metal anodes.The practical application of lithium metal anodes suffers from the poor Coulombic efficiency and growth of lithium dendrites. Here, the authors report an approach to enable the self-formation of stable and flexible solid-electrolyte interphase layers which serve to address both issues.

9.
Adv Mater ; 29(16)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28218478

RESUMEN

A Na-ion solid-state electrolyte, Na3 P0.62 As0.38 S4 , is developed with an exceptionally high conductivity of 1.46 mS cm-1 at 25 °C and enhanced moisture stability. Dual effects of alloying element As (lattice expansion and a weaker AsS bond strength) are responsible for the superior conductivity. Improved moisture stability is regulated by shifting low-energy moisture reactions to high-energy ones due to As.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA