Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Mol Cell ; 82(4): 833-851.e11, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35180428

RESUMEN

HOTTIP lncRNA is highly expressed in acute myeloid leukemia (AML) driven by MLL rearrangements or NPM1 mutations to mediate HOXA topologically associated domain (TAD) formation and drive aberrant transcription. However, the mechanism through which HOTTIP accesses CCCTC-binding factor (CTCF) chromatin boundaries and regulates CTCF-mediated genome topology remains unknown. Here, we show that HOTTIP directly interacts with and regulates a fraction of CTCF-binding sites (CBSs) in the AML genome by recruiting CTCF/cohesin complex and R-loop-associated regulators to form R-loops. HOTTIP-mediated R-loops reinforce the CTCF boundary and facilitate formation of TADs to drive gene transcription. Either deleting CBS or targeting RNase H to eliminate R-loops in the boundary CBS of ß-catenin TAD impaired CTCF boundary activity, inhibited promoter/enhancer interactions, reduced ß-catenin target expression, and mitigated leukemogenesis in xenograft mouse models with aberrant HOTTIP expression. Thus, HOTTIP-mediated R-loop formation directly reinforces CTCF chromatin boundary activity and TAD integrity to drive oncogene transcription and leukemia development.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Leucemia Mieloide Aguda/metabolismo , Estructuras R-Loop , ARN Largo no Codificante/metabolismo , beta Catenina/metabolismo , Animales , Factor de Unión a CCCTC/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación Leucémica de la Expresión Génica , Células HEK293 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones Transgénicos , ARN Largo no Codificante/genética , Relación Estructura-Actividad , Transcripción Genética , Activación Transcripcional , beta Catenina/genética , Cohesinas
2.
Blood ; 143(16): 1586-1598, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38211335

RESUMEN

ABSTRACT: Maintenance of quiescence and DNA replication dynamics are 2 paradoxical requirements for the distinct states of dormant and active hematopoietic stem cells (HSCs), which are required to preserve the stem cell reservoir and replenish the blood cell system in response to hematopoietic stress, respectively. Here, we show that key self-renewal factors, ß-catenin or Hoxa9, largely dispensable for HSC integrity, in fact, have dual functions in maintaining quiescence and enabling efficient DNA replication fork dynamics to preserve the functionality of hematopoietic stem and progenitor cells (HSPCs). Although ß-catenin or Hoxa9 single knockout (KO) exhibited mostly normal hematopoiesis, their coinactivation led to severe hematopoietic defects stemmed from aberrant cell cycle, DNA replication, and damage in HSPCs. Mechanistically, ß-catenin and Hoxa9 function in a compensatory manner to sustain key transcriptional programs that converge on the pivotal downstream target and epigenetic modifying enzyme, Prmt1, which protects the quiescent state and ensures an adequate supply of DNA replication and repair factors to maintain robust replication fork dynamics. Inactivation of Prmt1 phenocopied both cellular and molecular phenotypes of ß-catenin/Hoxa9 combined KO, which at the same time could also be partially rescued by Prmt1 expression. The discovery of the highly resilient ß-catenin/Hoxa9/Prmt1 axis in protecting both quiescence and DNA replication dynamics essential for HSCs at different key states provides not only novel mechanistic insights into their intricate regulation but also a potential tractable target for therapeutic intervention.


Asunto(s)
Células Madre Hematopoyéticas , beta Catenina , beta Catenina/metabolismo , Células Madre Hematopoyéticas/metabolismo , Ciclo Celular , División Celular , Replicación del ADN
3.
Proc Natl Acad Sci U S A ; 120(40): e2311557120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37748059

RESUMEN

Plasmodium parasites cause malaria with disease outcomes ranging from mild illness to deadly complications such as severe malarial anemia (SMA), pulmonary edema, acute renal failure, and cerebral malaria. In young children, SMA often requires blood transfusion and is a major cause of hospitalization. Malaria parasite infection leads to the destruction of infected and noninfected erythrocytes as well as dyserythropoiesis; however, the mechanism of dyserythropoiesis accompanied by splenomegaly is not completely understood. Using Plasmodium yoelii yoelii 17XNL as a model, we show that both a defect in erythroblastic island (EBI) macrophages in supporting red blood cell (RBC) maturation and the destruction of reticulocytes/RBCs by the parasites contribute to SMA and splenomegaly. After malaria parasite infection, the destruction of both infected and noninfected RBCs stimulates extramedullary erythropoiesis in mice. The continuous decline of RBCs stimulates active erythropoiesis and drives the expansion of EBIs in the spleen, contributing to splenomegaly. Phagocytosis of malaria parasites by macrophages in the bone marrow and spleen may alter their functional properties and abilities to support erythropoiesis, including reduced expression of the adherence molecule CD169 and inability to support erythroblast differentiation, particularly RBC maturation in vitro and in vivo. Therefore, macrophage dysfunction is a key mechanism contributing to SMA. Mitigating and/or alleviating the inhibition of RBC maturation may provide a treatment strategy for SMA.


Asunto(s)
Anemia , Malaria Cerebral , Plasmodium yoelii , Niño , Humanos , Animales , Ratones , Preescolar , Eritropoyesis , Esplenomegalia , Eritrocitos , Macrófagos
4.
Genes Dev ; 30(5): 508-21, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26944678

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous group of hematological tumors composed of distinct subtypes that vary in their genetic abnormalities, gene expression signatures, and prognoses. However, it remains unclear whether T-ALL subtypes differ at the functional level, and, as such, T-ALL treatments are uniformly applied across subtypes, leading to variable responses between patients. Here we reveal the existence of a subtype-specific epigenetic vulnerability in T-ALL by which a particular subgroup of T-ALL characterized by expression of the oncogenic transcription factor TAL1 is uniquely sensitive to variations in the dosage and activity of the histone 3 Lys27 (H3K27) demethylase UTX/KDM6A. Specifically, we identify UTX as a coactivator of TAL1 and show that it acts as a major regulator of the TAL1 leukemic gene expression program. Furthermore, we demonstrate that UTX, previously described as a tumor suppressor in T-ALL, is in fact a pro-oncogenic cofactor essential for leukemia maintenance in TAL1-positive (but not TAL1-negative) T-ALL. Exploiting this subtype-specific epigenetic vulnerability, we propose a novel therapeutic approach based on UTX inhibition through in vivo administration of an H3K27 demethylase inhibitor that efficiently kills TAL1-positive primary human leukemia. These findings provide the first opportunity to develop personalized epigenetic therapy for T-ALL patients.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica/genética , Terapia Genética , Histona Demetilasas/genética , Proteínas Nucleares/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Proteínas Proto-Oncogénicas/metabolismo , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Histona Demetilasas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/fisiopatología , Proteínas Proto-Oncogénicas/genética , Proteína 1 de la Leucemia Linfocítica T Aguda
5.
Blood ; 138(23): 2327-2336, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34482397

RESUMEN

Genome-wide analyses have revealed that long noncoding RNAs (lncRNAs) are not only passive transcription products, but also major regulators of genome structure and transcription. In particular, lncRNAs exert profound effects on various biological processes, such as chromatin structure, transcription, RNA stability and translation, and protein degradation and localization, that depend on their localization and interacting partners. Recent studies have revealed that thousands of lncRNAs are aberrantly expressed in various cancer types, and some are associated with malignant transformation. Despite extensive efforts, the diverse functions of lncRNAs and molecular mechanisms in which they act remain elusive. Many hematological disorders and malignancies primarily result from genetic alterations that lead to the dysregulation of gene regulatory networks required for cellular proliferation and differentiation. Consequently, a growing list of lncRNAs has been reported to be involved in the modulation of hematopoietic gene expression networks and hematopoietic stem and progenitor cell (HSPC) function. Dysregulation of some of these lncRNAs has been attributed to the pathogenesis of hematological malignancies. In this review, we summarize current advances and knowledge of lncRNAs in gene regulation, focusing on recent progress on the role of lncRNAs in CTCF/cohesin-mediated 3-dimensional genome organization and how such genome folding signals, in turn, regulate transcription, HSPC function, and transformation. This knowledge will provide mechanistic and translational insights into HSPC biology and myeloid malignancy pathophysiology.


Asunto(s)
Neoplasias Hematológicas/genética , Hematopoyesis , ARN Largo no Codificante/genética , Animales , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Neoplasias Hematológicas/patología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos
6.
Nucleic Acids Res ; 49(17): 9783-9798, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34450641

RESUMEN

The activity of hematopoietic factor GATA-1 is modulated through p300/CBP-mediated acetylation and FOG-1 mediated indirect interaction with HDAC1/2 containing NuRD complex. Although GATA-1 acetylation is implicated in GATA-1 activation, the role of deacetylation is not studied. Here, we found that the FOG-1/NuRD does not deacetylate GATA-1. However, HDAC1/2 can directly bind and deacetylate GATA-1. Two arginine residues within the GATA-1 linker region mediates direct interaction with HDAC1. The arginine to alanine mutation (2RA) blocks GATA-1 deacetylation and fails to induce erythroid differentiation. Gene expression profiling and ChIP-seq analysis further demonstrate the importance of GATA-1 deacetylation for gene activation and chromatin recruitment. GATA-12RA knock-in (KI) mice suffer mild anemia and thrombocytopenia with accumulation of immature erythrocytes and megakaryocytes in bone marrow and spleen. Single cell RNA-seq analysis of Lin- cKit+ (LK) cells further reveal a profound change in cell subpopulations and signature gene expression patterns in HSC, myeloid progenitors, and erythroid/megakaryocyte clusters in KI mice. Thus, GATA-1 deacetylation and its interaction with HDAC1 modulates GATA-1 chromatin binding and transcriptional activity that control erythroid/megakaryocyte commitment and differentiation.


Asunto(s)
Cromatina/metabolismo , Factor de Transcripción GATA1/metabolismo , Hematopoyesis/genética , Histona Desacetilasa 1/metabolismo , Transcripción Genética , Anemia/genética , Animales , Sitios de Unión , Células Eritroides/citología , Células Eritroides/metabolismo , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/fisiología , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Histona Desacetilasa 1/fisiología , Megacariocitos/citología , Megacariocitos/metabolismo , Ratones , Trombocitopenia/genética
7.
Blood ; 136(13): 1520-1534, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32396934

RESUMEN

High-risk B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive disease, often characterized by resistance to chemotherapy. A frequent feature of high-risk B-ALL is loss of function of the IKAROS (encoded by the IKZF1 gene) tumor suppressor. Here, we report that IKAROS regulates expression of the BCL2L1 gene (encodes the BCL-XL protein) in human B-ALL. Gain-of-function and loss-of-function experiments demonstrate that IKAROS binds to the BCL2L1 promoter, recruits histone deacetylase HDAC1, and represses BCL2L1 expression via chromatin remodeling. In leukemia, IKAROS' function is impaired by oncogenic casein kinase II (CK2), which is overexpressed in B-ALL. Phosphorylation by CK2 reduces IKAROS binding and recruitment of HDAC1 to the BCL2L1 promoter. This results in a loss of IKAROS-mediated repression of BCL2L1 and increased expression of BCL-XL. Increased expression of BCL-XL and/or CK2, as well as reduced IKAROS expression, are associated with resistance to doxorubicin treatment. Molecular and pharmacological inhibition of CK2 with a specific inhibitor CX-4945, increases binding of IKAROS to the BCL2L1 promoter and enhances IKAROS-mediated repression of BCL2L1 in B-ALL. Treatment with CX-4945 increases sensitivity to doxorubicin in B-ALL, and reverses resistance to doxorubicin in multidrug-resistant B-ALL. Combination treatment with CX-4945 and doxorubicin show synergistic therapeutic effects in vitro and in preclinical models of high-risk B-ALL. Results reveal a novel signaling network that regulates chemoresistance in leukemia. These data lay the groundwork for clinical testing of a rationally designed, targeted therapy that combines the CK2 inhibitor, CX-4945, with doxorubicin for the treatment of hematopoietic malignancies.


Asunto(s)
Quinasa de la Caseína II/genética , Resistencia a Antineoplásicos , Regulación Leucémica de la Expresión Génica , Factor de Transcripción Ikaros/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteína bcl-X/genética , Animales , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico
8.
Nucleic Acids Res ; 48(6): 3119-3133, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32086528

RESUMEN

Aberrant activation of the TAL1 is associated with up to 60% of T-ALL cases and is involved in CTCF-mediated genome organization within the TAL1 locus, suggesting that CTCF boundary plays a pathogenic role in T-ALL. Here, we show that -31-Kb CTCF binding site (-31CBS) serves as chromatin boundary that defines topologically associating domain (TAD) and enhancer/promoter interaction required for TAL1 activation. Deleted or inverted -31CBS impairs TAL1 expression in a context-dependent manner. Deletion of -31CBS reduces chromatin accessibility and blocks long-range interaction between the +51 erythroid enhancer and TAL1 promoter-1 leading to inhibition of TAL1 expression in erythroid cells, but not T-ALL cells. However, in TAL1-expressing T-ALL cells, the leukemia-prone TAL1 promoter-IV specifically interacts with the +19 stem cell enhancer located 19 Kb downstream of TAL1 and this interaction is disrupted by the -31CBS inversion in T-ALL cells. Inversion of -31CBS in Jurkat cells alters chromatin accessibility, histone modifications and CTCF-mediated TAD leading to inhibition of TAL1 expression and TAL1-driven leukemogenesis. Thus, our data reveal that -31CBS acts as critical regulator to define +19-enhancer and the leukemic prone promoter IV interaction for TAL1 activation in T-ALL. Manipulation of CTCF boundary can alter TAL1 TAD and oncogenic transcription networks in leukemogenesis.


Asunto(s)
Factor de Unión a CCCTC/genética , Carcinogénesis/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteína 1 de la Leucemia Linfocítica T Aguda/genética , Sitios de Unión/genética , Cromatina/genética , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica , Genoma Humano/genética , Código de Histonas/genética , Humanos , Células Jurkat , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Unión Proteica/genética , Transcripción Genética/genética
9.
Blood ; 132(8): 837-848, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-29760161

RESUMEN

HOX gene dysregulation is a common feature of acute myeloid leukemia (AML). The molecular mechanisms underlying aberrant HOX gene expression and associated AML pathogenesis remain unclear. The nuclear protein CCCTC-binding factor (CTCF), when bound to insulator sequences, constrains temporal HOX gene-expression patterns within confined chromatin domains for normal development. Here, we used targeted pooled CRISPR-Cas9-knockout library screening to interrogate the function of CTCF boundaries in the HOX gene loci. We discovered that the CTCF binding site located between HOXA7 and HOXA9 genes (CBS7/9) is critical for establishing and maintaining aberrant HOXA9-HOXA13 gene expression in AML. Disruption of the CBS7/9 boundary resulted in spreading of repressive H3K27me3 into the posterior active HOXA chromatin domain that subsequently impaired enhancer/promoter chromatin accessibility and disrupted ectopic long-range interactions among the posterior HOXA genes. Consistent with the role of the CBS7/9 boundary in HOXA locus chromatin organization, attenuation of the CBS7/9 boundary function reduced posterior HOXA gene expression and altered myeloid-specific transcriptome profiles important for pathogenesis of myeloid malignancies. Furthermore, heterozygous deletion of the CBS7/9 chromatin boundary in the HOXA locus reduced human leukemic blast burden and enhanced survival of transplanted AML cell xenograft and patient-derived xenograft mouse models. Thus, the CTCF boundary constrains the normal gene-expression program, as well as plays a role in maintaining the oncogenic transcription program for leukemic transformation. The CTCF boundaries may serve as novel therapeutic targets for the treatment of myeloid malignancies.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Ensamble y Desensamble de Cromatina , Regulación Leucémica de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Transcripción Genética , Animales , Factor de Unión a CCCTC/genética , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proteínas de Homeodominio/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Proteínas de Neoplasias/genética
10.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187090

RESUMEN

Histone deacetylases (HDACs) play important roles in transcriptional regulation in eukaryotic cells. Class I deacetylase HDAC1/2 often associates with repressor complexes, such as Sin3 (Switch Independent 3), NuRD (Nucleosome remodeling and deacetylase) and CoREST (Corepressor of RE1 silencing transcription factor) complexes. It has been shown that HDAC1 interacts with and modulates all essential transcription factors for erythropoiesis. During erythropoiesis, histone deacetylase activity is dramatically reduced. Consistently, inhibition of HDAC activity promotes erythroid differentiation. The reduction of HDAC activity not only results in the activation of transcription activators such as GATA-1 (GATA-binding factor 1), TAL1 (TAL BHLH Transcription Factor 1) and KLF1 (Krüpple-like factor 1), but also represses transcription repressors such as PU.1 (Putative oncogene Spi-1). The reduction of histone deacetylase activity is mainly through HDAC1 acetylation that attenuates HDAC1 activity and trans-repress HDAC2 activity through dimerization with HDAC1. Therefore, the acetylation of HDAC1 can convert the corepressor complex to an activator complex for gene activation. HDAC1 also can deacetylate non-histone proteins that play a role on erythropoiesis, therefore adds another layer of gene regulation through HDAC1. Clinically, it has been shown HDACi can reactivate fetal globin in adult erythroid cells. This review will cover the up to date research on the role of HDAC1 in modulating key transcription factors for erythropoiesis and its clinical relevance.


Asunto(s)
Eritropoyesis/genética , Histona Desacetilasa 1/genética , Acetilación , Animales , Proteínas Co-Represoras/genética , Células Eritroides/metabolismo , Humanos , Factores de Transcripción/genética , Activación Transcripcional/genética
11.
FASEB J ; 31(9): 4104-4116, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28572446

RESUMEN

Histone acetyltransferases and histone deacetylases (HDACs) are important epigenetic coregulators. It has been thought that HDACs associate with corepressor complexes and repress gene transcription; however, in this study, we have found that PU.1-a key master regulator for hematopoietic self-renewal and lineage specification-requires HDAC activity for gene activation. Deregulated PU.1 gene expression is linked to dysregulated hematopoiesis and the development of leukemia. In this study, we used erythroid differentiation as a model to analyze how the PU.1 gene is regulated. We found that active HDAC1 is directly recruited to active PU.1 promoter in progenitor cells, whereas acetylated HDAC1, which is inactive, is on the silenced PU.1 promoter in differentiated erythroid cells. We then studied the mechanism of HDAC1-mediated activation. We discovered that HDAC1 activates PU.1 gene transcription via deacetylation of TATA-binding protein-associated factor 9 (TAF9), a component in the transcription factor IID (TFIID) complex. Treatment with HDAC inhibitor results in an increase in TAF9 acetylation. Acetylated TAF9 does not bind to the PU.1 gene promoter and subsequently leads to the disassociation of the TFIID complex and transcription repression. Thus, these results demonstrate a key role for HDAC1 in PU.1 gene transcription and, more importantly, uncover a novel mechanism of TFIID recruitment and gene activation.-Jian, W., Yan, B., Huang, S., Qiu, Y. Histone deacetylase 1 activates PU.1 gene transcription through regulating TAF9 deacetylation and transcription factor IID assembly.


Asunto(s)
Histona Desacetilasa 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Transactivadores/metabolismo , Factor de Transcripción TFIID/metabolismo , Animales , Células Eritroides , Eritropoyesis/fisiología , Histona Desacetilasa 1/genética , Humanos , Células K562 , Ratones , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Células RAW 264.7 , Linfocitos T/fisiología , Factores Asociados con la Proteína de Unión a TATA/genética , Transactivadores/genética , Factor de Transcripción TFIID/genética
12.
Nucleic Acids Res ; 44(15): 7173-88, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27141965

RESUMEN

The modulation of chromatin structure is a key step in transcription regulation in mammalian cells and eventually determines lineage commitment and differentiation. USF1/2, Setd1a and NURF complexes interact to regulate chromatin architecture in erythropoiesis, but the mechanistic basis for this regulation is hitherto unknown. Here we showed that Setd1a and NURF complexes bind to promoters to control chromatin structural alterations and gene activation in a cell context dependent manner. In human primary erythroid cells USF1/2, H3K4me3 and the NURF complex were significantly co-enriched at transcription start sites of erythroid genes, and their binding was associated with promoter/enhancer accessibility that resulted from nucleosome repositioning. Mice deficient for Setd1a, an H3K4 trimethylase, in the erythroid compartment exhibited reduced Ter119/CD71 positive erythroblasts, peripheral blood RBCs and hemoglobin levels. Loss of Setd1a led to a reduction of promoter-associated H3K4 methylation, inhibition of gene transcription and blockade of erythroid differentiation. This was associated with alterations in NURF complex occupancy at erythroid gene promoters and reduced chromatin accessibility. Setd1a deficiency caused decreased associations between enhancer and promoter looped interactions as well as reduced expression of erythroid genes such as the adult ß-globin gene. These data indicate that Setd1a and NURF complexes are specifically targeted to and coordinately regulate erythroid promoter chromatin dynamics during erythroid lineage differentiation.


Asunto(s)
Linaje de la Célula , Ensamble y Desensamble de Cromatina , Eritrocitos/citología , Eritropoyesis , Regulación de la Expresión Génica/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Complejos Multiproteicos/metabolismo , Animales , Antígenos Nucleares/metabolismo , Linaje de la Célula/genética , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Eritroblastos/citología , Eritroblastos/metabolismo , Recuento de Eritrocitos , Eritrocitos/metabolismo , Eritropoyesis/genética , Femenino , Hemoglobinas/metabolismo , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Masculino , Metilación , Ratones , Ratones Noqueados , Nucleasa Microcócica/metabolismo , Complejos Multiproteicos/química , Proteínas del Tejido Nervioso/metabolismo , Regiones Promotoras Genéticas/genética , Bazo/citología , Factores de Transcripción/metabolismo , Factores Estimuladores hacia 5'/metabolismo
13.
Haematologica ; 102(6): 984-994, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28255013

RESUMEN

The formin protein mDia2 plays a critical role in a number of cellular processes through its ability to promote nucleation and elongation of actin filaments. In erythroblasts, this includes control of cytokinesis and enucleation by regulating contractile actin ring formation. Here we report a novel mechanism of how mDia2 is regulated: through acetylation and deacetylation at lysine 970 in the formin homology 2 domain. Ectopic expression of an acetyl-mimic mDia2 mutant in mouse erythroblasts is sufficient to abolish contractile actin ring formation at the cleavage furrow and subsequent erythrocyte cytokinesis and enucleation. We also identified that class II histone deacetylase 6 deacetylates and subsequently activates mDia2. Knockdown or inhibition of histone deacetylase 6 impairs contractile actin ring formation, and expression of a non-acetyl-mimic mDia2 mutant restores the contractile actin ring and rescues the impairment of enucleation. In addition to revealing a new step in mDia2 regulation, this study may unveil a novel regulatory mechanism of formin-mediated actin assembly, since the K970 acetylation site is conserved among Dia proteins.


Asunto(s)
Citocinesis , Eritroblastos/citología , Eritropoyesis , Histona Desacetilasa 6/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , NADPH Deshidrogenasa/metabolismo , Acetilación , Actinas/metabolismo , Animales , Células Cultivadas , Lisina/metabolismo , Ratones , Proteínas de Microfilamentos/metabolismo
14.
FASEB J ; 29(4): 1505-15, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25550471

RESUMEN

SETD1A is a member of trithorax-related histone methyltransferases that methylate lysine 4 at histone H3 (H3K4). We showed previously that Setd1a is required for mesoderm specification and hematopoietic lineage differentiation in vitro. However, it remains unknown whether or not Setd1a controls specific hematopoietic lineage commitment and differentiation during animal development. Here, we reported that homozygous Setd1a knockout (KO) mice are embryonic lethal. Loss of the Setd1a gene in the hematopoietic compartment resulted in a blockage of the progenitor B-cell-to-precursor B-cell development in bone marrow (BM) and B-cell maturation in spleen. The Setd1a-cKO (conditional knockout) mice exhibited an enlarged spleen with disrupted spleen architecture and leukocytopenia. Mechanistically, Setd1a deficiency in BM reduced the levels of H3K4me3 at critical B-cell gene loci, including Pax5 and Rag1/2, which are critical for the IgH (Ig heavy-chain) locus contractions and rearrangement. Subsequently, the differential long-range looped interactions of the enhancer Eµ with proximal 5' DH region and 3' regulatory regions as well as with Pax5-activated intergenic repeat elements and 5' distal VH genes were compromised by the Setd1a-cKO. Together, our findings revealed a critical role of Setd1a and its mediated epigenetic modifications in regulating the IgH rearrangement and B-cell development.


Asunto(s)
Reordenamiento Génico de Cadena Pesada de Linfocito B , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Canales Iónicos/metabolismo , Células Precursoras de Linfocitos B/inmunología , Células Precursoras de Linfocitos B/metabolismo , Animales , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Histonas/química , Proteínas de Homeodominio/metabolismo , Canales Iónicos/deficiencia , Canales Iónicos/genética , Leucopoyesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción PAX5/metabolismo , Células Precursoras de Linfocitos B/citología
15.
Nucleic Acids Res ; 42(7): 4363-74, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24497190

RESUMEN

Developmental stage-specific expression of the ß-type globin genes is regulated by many cis- and trans-acting components. The adult ß-globin gene contains an E-box located 60 bp downstream of the transcription start site that has been shown to bind transcription factor upstream stimulatory factor (USF) and to contribute to efficient in vitro transcription. We expressed an artificial zinc finger DNA-binding domain (ZF-DBD) targeting this site (+60 ZF-DBD) in murine erythroleukemia cells. Expression of the +60 ZF-DBD reduced the recruitment and elongation of RNA polymerase II (Pol II) at the adult ß-globin gene and at the same time increased the binding of Pol II at locus control region (LCR) element HS2, suggesting that Pol II is transferred from the LCR to the globin gene promoters. Expression of the +60 ZF-DBD also reduced the frequency of interactions between the LCR and the adult ß-globin promoter. ChIP-exonuclease-sequencing revealed that the +60ZF-DBD was targeted to the adult ß-globin downstream promoter and that the binding of the ZF-DBD caused alterations in the association of USF2 containing protein complexes. The data demonstrate that targeting a ZF-DBD to the adult ß-globin downstream promoter region interferes with the LCR-mediated recruitment and activity of Pol II.


Asunto(s)
Regiones Promotoras Genéticas , Dedos de Zinc , Globinas beta/genética , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/química , Región de Control de Posición , Factor de Transcripción NF-E2/metabolismo , Estructura Terciaria de Proteína , ARN Polimerasa II/metabolismo
16.
PLoS Genet ; 9(6): e1003524, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23754954

RESUMEN

The interplay between polycomb and trithorax complexes has been implicated in embryonic stem cell (ESC) self-renewal and differentiation. It has been shown recently that WRD5 and Dpy-30, specific components of the SET1/MLL protein complexes, play important roles during ESC self-renewal and differentiation of neural lineages. However, not much is known about how and where specific trithorax complexes are targeted to genes involved in self-renewal or lineage-specification. Here, we report that the recruitment of the hSET1A histone H3K4 methyltransferase (HMT) complex by transcription factor USF1 is required for mesoderm specification and lineage differentiation. In undifferentiated ESCs, USF1 maintains hematopoietic stem/progenitor cell (HS/PC) associated bivalent chromatin domains and differentiation potential. Furthermore, USF1 directed recruitment of the hSET1A complex to the HoxB4 promoter governs the transcriptional activation of HoxB4 gene and regulates the formation of early hematopoietic cell populations. Disruption of USF or hSET1A function by overexpression of a dominant-negative AUSF1 mutant or by RNA-interference-mediated knockdown, respectively, led to reduced expression of mesoderm markers and inhibition of lineage differentiation. We show that USF1 and hSET1A together regulate H3K4me3 modifications and transcription preinitiation complex assembly at the hematopoietic-associated HoxB4 gene during differentiation. Finally, ectopic expression of USF1 in ESCs promotes mesoderm differentiation and enforces the endothelial-to-hematopoietic transition by inducing hematopoietic-associated transcription factors, HoxB4 and TAL1. Taken together, our findings reveal that the guided-recruitment of the hSET1A histone methyltransferase complex and its H3K4 methyltransferase activity by transcription regulator USF1 safeguards hematopoietic transcription programs and enhances mesoderm/hematopoietic differentiation.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/citología , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/genética , Factores Estimuladores hacia 5'/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Células K562 , Mesodermo/citología , Mesodermo/metabolismo , Metiltransferasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda , Factores de Transcripción/metabolismo , Activación Transcripcional , Factores Estimuladores hacia 5'/metabolismo
17.
FASEB J ; 28(10): 4265-79, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24948597

RESUMEN

Histone deacetylases (HDACs) that deacetylate histone and nonhistone proteins play crucial roles in a variety of cellular processes. The overexpression of HDACs is reported in many cancer types and is directly linked to accelerated cell proliferation and survival. However, little is known about how HDAC expression is regulated in cancer cells. In this study, we found that HDAC1 and HDAC2 promoters are regulated through collaborative binding of transcription factors Sp1/Sp3 and epigenetic modulators, including histone H3K4 methyltransferase SET1 and histone acetyltransferase p300, whose levels are also elevated in colon cancer cell lines and patient samples. Interestingly, Sp1 and Sp3 differentially regulate HDAC1 and HDAC2 promoter activity. In addition, Sp1/Sp3 recruits SET1 and p300 to the promoters. SET1 knockdown (KD) results in a loss of the H3K4 trimethylation mark at the promoters, as well as destabilizes p300 at the promoters. Conversely, p300 also influences SET1 recruitment and H3K4me3 level, indicating a crosstalk between p300 and SET1. Further, SET1 KD reduces Sp1 binding to the HDAC1 promoter through the increase of Sp1 acetylation. These results indicate that interactions among transcription factors and epigenetic modulators orchestrate the activation of HDAC1 and HDAC2 promoter activity in colon cancer cells.


Asunto(s)
Neoplasias del Colon/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Células HCT116 , Células HT29 , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Regiones Promotoras Genéticas , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
18.
J Biol Chem ; 288(48): 34719-28, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24163373

RESUMEN

The stem cell protein SALL4 plays a critical role in hematopoiesis by regulating the cell fate. In primitive hematopoietic precursors, it activates or represses important genes via recruitment of various epigenetic factors such as DNA methyltransferases, and histone deacylases. Here, we demonstrate that LSD1, a histone lysine demethylase, also participates in the trans-repressive effects of SALL4. Based on luciferase assays, the amine oxidase domain of LSD1 is important in suppressing SALL4-mediated reporter transcription. In freshly isolated adult mouse bone marrows, both SALL4 and LSD1 proteins are preferentially expressed in undifferentiated progenitor cells and co-localize in the nuclei. Further sequential chromatin immunoprecipitation assay confirmed that these two factors share the same binding sites at the promoter regions of important hematopoietic regulatory genes including EBF1, GATA1, and TNF. In addition, studies from both gain- and loss-of-function models revealed that SALL4 dynamically controls the binding levels of LSD1, which is accompanied by a reversely changed histone 3 dimethylated lysine 4 at the same promoter regions. Finally, shRNA-mediated knockdown of LSD1 in hematopoietic precursor cells resulted in altered SALL4 downstream gene expression and increased cellular activity. Thus, our data revealed that histone demethylase LSD1 may negatively regulate SALL4-mediated transcription, and the dynamic regulation of SALL4-associated epigenetic factors cooperatively modulates early hematopoietic precursor proliferation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Oxidorreductasas N-Desmetilantes/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Proliferación Celular , Células Cultivadas , Metilasas de Modificación del ADN , Proteínas de Unión al ADN/genética , Epigénesis Genética , Silenciador del Gen , Células Madre Hematopoyéticas/enzimología , Histona Demetilasas , Histonas/genética , Histonas/metabolismo , Lisina/genética , Ratones , Oxidorreductasas N-Desmetilantes/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda , Factores de Transcripción/genética
19.
Genome Res ; 21(10): 1650-8, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21795385

RESUMEN

Enhancers of transcription activate transcription via binding of sequence-specific transcription factors to their target sites in chromatin. In this report, we identify GATA1-bound distal sites genome-wide and find a global reorganization of the nucleosomes at these potential enhancers during differentiation of hematopoietic stem cells (HSCs) to erythrocytes. We show that the catalytic subunit BRG1 of BAF complexes localizes to these distal sites during differentiation and generates a longer nucleosome linker region surrounding the GATA1 sites by shifting the flanking nucleosomes away. Intriguingly, we find that the nucleosome shifting specifically facilitates binding of TAL1 but not GATA1 and is linked to subsequent transcriptional regulation of target genes.


Asunto(s)
ADN Helicasas/metabolismo , Elementos de Facilitación Genéticos , Factor de Transcripción GATA1/metabolismo , Regulación de la Expresión Génica , Proteínas Nucleares/metabolismo , Nucleosomas , Factores de Transcripción/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Factor de Unión a CCCTC , Diferenciación Celular/genética , Células Cultivadas , Ensamble y Desensamble de Cromatina , Inmunoprecipitación de Cromatina , ADN Helicasas/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/fisiología , Humanos , Proteínas Nucleares/genética , Especificidad de Órganos , Cultivo Primario de Células , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda , Factores de Transcripción/genética , Transcripción Genética
20.
Nat Commun ; 15(1): 5674, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971831

RESUMEN

Quiescence, a hallmark of adult neural stem cells (NSCs), is required for maintaining the NSC pool to support life-long continuous neurogenesis in the adult dentate gyrus (DG). Whether long-lasting epigenetic modifications maintain NSC quiescence over the long term in the adult DG is not well-understood. Here we show that mice with haploinsufficiency of Setd1a, a schizophrenia risk gene encoding a histone H3K4 methyltransferase, develop an enlarged DG with more dentate granule cells after young adulthood. Deletion of Setd1a specifically in quiescent NSCs in the adult DG promotes their activation and neurogenesis, which is countered by inhibition of the histone demethylase LSD1. Mechanistically, RNA-sequencing and CUT & RUN analyses of cultured quiescent adult NSCs reveal Setd1a deletion-induced transcriptional changes and many Setd1a targets, among which down-regulation of Bhlhe40 promotes quiescent NSC activation in the adult DG in vivo. Together, our study reveals a Setd1a-dependent epigenetic mechanism that sustains NSC quiescence in the adult DG.


Asunto(s)
Giro Dentado , Epigénesis Genética , Hipocampo , N-Metiltransferasa de Histona-Lisina , Células-Madre Neurales , Neurogénesis , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Ratones , Neurogénesis/genética , Giro Dentado/citología , Giro Dentado/metabolismo , Hipocampo/metabolismo , Hipocampo/citología , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Masculino , Células Madre Adultas/metabolismo , Células Madre Adultas/citología , Ratones Noqueados , Ratones Endogámicos C57BL , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA