Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
Chem Soc Rev ; 53(4): 1789-1822, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38170619

RESUMEN

Immunoengineering is a rapidly evolving field that has been driving innovations in manipulating immune system for new treatment tools and methods. The need for materials for immunoengineering applications has gained significant attention in recent years due to the growing demand for effective therapies that can target and regulate the immune system. Biologics and biomaterials are emerging as promising tools for controlling immune responses, and a wide variety of materials, including proteins, polymers, nanoparticles, and hydrogels, are being developed for this purpose. In this review article, we explore the different types of materials used in immunoengineering applications, their properties and design principles, and highlight the latest therapeutic materials advancements. Recent works in adjuvants, vaccines, immune tolerance, immunotherapy, and tissue models for immunoengineering studies are discussed.


Asunto(s)
Inmunoterapia , Vacunas , Materiales Biocompatibles/uso terapéutico , Proteínas
2.
Kidney Int ; 101(5): 845-853, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35276204

RESUMEN

Acute kidney injury impacts âˆ¼13.3 million individuals and causes âˆ¼1.7 million deaths per year globally. Numerous injury pathways contribute to acute kidney injury, including cell cycle arrest, senescence, inflammation, mitochondrial dysfunction, and endothelial injury and dysfunction, and can lead to chronic inflammation and fibrosis. However, factors enabling productive repair versus nonproductive, persistent injury states remain less understood. The (Re)Building a Kidney (RBK) consortium is a National Institute of Diabetes and Digestive and Kidney Diseases consortium focused on both endogenous kidney repair mechanisms and the generation of new kidney tissue. This short review provides an update on RBK studies of endogenous nephron repair, addressing the following questions: (i) What is productive nephron repair? (ii) What are the cellular sources and drivers of repair? and (iii) How do RBK studies promote development of therapeutics? Also, we provide a guide to RBK's open access data hub for accessing, downloading, and further analyzing data sets.


Asunto(s)
Lesión Renal Aguda , Riñón , Lesión Renal Aguda/patología , Femenino , Fibrosis , Humanos , Inflamación/patología , Riñón/patología , Masculino , National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) , Regeneración , Estados Unidos
3.
Am J Physiol Cell Physiol ; 321(2): C369-C383, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34232748

RESUMEN

Since the discovery of cytokines, much effort has been put forth to achieve therapeutic translation for treatment of various diseases, including cancer and autoimmune diseases. Despite these efforts, very few cytokines have cleared regulatory approval, and those that were approved are not commonly used due to their challenging toxicity profile and/or limited therapeutic efficacy. The main limitation in translation has been that wild-type cytokines have unfavorable pharmacokinetic and pharmacodynamic profiles, either eliciting unwanted systemic side effects or insufficient residence in secondary lymphoid organs. In this review, we address protein-engineering approaches that have been applied to both proinflammatory and anti-inflammatory cytokines to enhance their therapeutic indices, and we highlight diseases in which administration of engineered cytokines is especially relevant.


Asunto(s)
Citocinas/uso terapéutico , Inmunoterapia , Neoplasias/terapia , Ingeniería de Proteínas , Animales , Citocinas/genética , Sistemas de Liberación de Medicamentos/métodos , Humanos , Inmunoterapia/métodos , Inflamación/tratamiento farmacológico , Neoplasias/genética , Neoplasias/inmunología
4.
Blood ; 133(24): 2559-2569, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-30975637

RESUMEN

During wound healing, the distribution, availability, and signaling of growth factors (GFs) are orchestrated by their binding to extracellular matrix components in the wound microenvironment. Extracellular matrix proteins have been shown to modulate angiogenesis and promote wound healing through GF binding. The hemostatic protein von Willebrand factor (VWF) released by endothelial cells (ECs) in plasma and in the subendothelial matrix has been shown to regulate angiogenesis; this function is relevant to patients in whom VWF deficiency or dysfunction is associated with vascular malformations. Here, we show that VWF deficiency in mice causes delayed wound healing accompanied by decreased angiogenesis and decreased amounts of angiogenic GFs in the wound. We show that in vitro VWF binds to several GFs, including vascular endothelial growth factor-A (VEGF-A) isoforms and platelet-derived growth factor-BB (PDGF-BB), mainly through the heparin-binding domain (HBD) within the VWF A1 domain. VWF also binds to VEGF-A and fibroblast growth factor-2 (FGF-2) in human plasma and colocalizes with VEGF-A in ECs. Incorporation of the VWF A1 HBD into fibrin matrices enables sequestration and slow release of incorporated GFs. In vivo, VWF A1 HBD-functionalized fibrin matrices increased angiogenesis and GF retention in VWF-deficient mice. Treatment of chronic skin wounds in diabetic mice with VEGF-A165 and PDGF-BB incorporated within VWF A1 HBD-functionalized fibrin matrices accelerated wound healing, with increased angiogenesis and smooth muscle cell proliferation. Therefore, the VWF A1 HBD can function as a GF reservoir, leading to effective angiogenesis and tissue regeneration.


Asunto(s)
Neovascularización Fisiológica/fisiología , Cicatrización de Heridas/fisiología , Factor de von Willebrand/metabolismo , Animales , Diabetes Mellitus Experimental , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Dominios Proteicos
5.
J Immunol ; 212(2): 167-168, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38166250
6.
Nat Mater ; 18(2): 175-185, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643235

RESUMEN

Fully effective vaccines for complex infections must elicit a diverse repertoire of antibodies (humoral immunity) and CD8+ T-cell responses (cellular immunity). Here, we present a synthetic glyco-adjuvant named p(Man-TLR7), which, when conjugated to antigens, elicits robust humoral and cellular immunity. p(Man-TLR7) is a random copolymer composed of monomers that either target dendritic cells (DCs) via mannose-binding receptors or activate DCs via Toll-like receptor 7 (TLR7). Protein antigens are conjugated to p(Man-TLR7) via a self-immolative linkage that releases chemically unmodified antigen after endocytosis, thus amplifying antigen presentation to T cells. Studies with ovalbumin (OVA)-p(Man-TLR7) conjugates demonstrate that OVA-p(Man-TLR7) generates greater humoral and cellular immunity than OVA conjugated to polymers lacking either mannose targeting or TLR7 ligand. We show significant enhancement of Plasmodium falciparum-derived circumsporozoite protein (CSP)-specific T-cell responses, expansion in the breadth of the αCSP IgG response and increased inhibition of sporozoite invasion into hepatocytes with CSP-p(Man-TLR7) when compared with CSP formulated with MPLA/QS-21-loaded liposomes-the adjuvant used in the most clinically advanced malaria vaccine. We conclude that our antigen-p(Man-TLR7) platform offers a strategy to enhance the immunogenicity of protein subunit vaccines.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Antígenos de Protozoos/química , Glicoconjugados/química , Inmunidad Celular/efectos de los fármacos , Inmunidad Humoral/efectos de los fármacos , Polímeros/química , Adyuvantes Inmunológicos/química , Animales , Ratones , Plasmodium falciparum/inmunología , Vacunas Antiprotozoos/química , Vacunas Antiprotozoos/inmunología
7.
Biomacromolecules ; 20(11): 4075-4087, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614080

RESUMEN

An enzymatically cross-linked polyethylene glycol (PEG)-based hydrogel was engineered to promote and align nerve cells in a three-dimensional manner. To render the injectable, otherwise bioinert, PEG-based material supportive for cell growth, its mechanical and biochemical properties were optimized. A recombinant fibronectin fragment (FNIII9*-10/12-14) was coupled to the PEG backbone during gelation to provide cell adhesive and growth factor binding domains in close vicinity. Compared to full-length fibronectin, FNIII9*-10/12-14 supports nerve growth at similar concentrations. In a 3D environment, only the ultrasoft 1 w/v% PEG hydrogels with a storage modulus of ∼10 Pa promoted neuronal growth. This gel was used to establish the first fully synthetic, injectable Anisogel by the addition of magnetically aligned microelements, such as rod-shaped microgels or short fibers. The Anisogel led to linear neurite extension and represents a large step in the direction of clinical translation with the opportunity to treat acute spinal cord injuries.


Asunto(s)
Fibronectinas/farmacología , Hidrogeles/farmacología , Neuronas/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Materiales Biocompatibles/química , Proliferación Celular/efectos de los fármacos , Fibronectinas/química , Humanos , Hidrogeles/química , Tejido Nervioso/efectos de los fármacos , Tejido Nervioso/crecimiento & desarrollo , Neuritas/efectos de los fármacos , Polietilenglicoles/química , Polietilenglicoles/farmacología , Traumatismos de la Médula Espinal/patología
8.
Am J Transplant ; 18(3): 590-603, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29068143

RESUMEN

Islet encapsulation may allow transplantation without immunosuppression, but thus far islets in large microcapsules transplanted in the peritoneal cavity have failed to reverse diabetes in humans. We showed that islet transplantation in confined well-vascularized sites like the epididymal fat pad (EFP) improved graft outcomes, but only conformal coated (CC) islets can be implanted in these sites in curative doses. Here, we showed that CC using polyethylene glycol (PEG) and alginate (ALG) was not immunoisolating because of its high permselectivity and strong allogeneic T cell responses. We refined the CC composition and explored PEG and islet-like extracellular matrix (Matrigel; MG) islet encapsulation (PEG MG) to improve capsule immunoisolation by decreasing its permselectivity and immunogenicity while allowing physiological islet function. Although the efficiency of diabetes reversal of allogeneic but not syngeneic CC islets was lower than that of naked islets, we showed that CC (PEG MG) islets from fully MHC-mismatched Balb/c mice supported long-term (>100 days) survival after transplantation into diabetic C57BL/6 recipients in the EFP site (750-1000 islet equivalents/mouse) in the absence of immunosuppression. Lack of immune cell penetration and T cell allogeneic priming was observed. These studies support the use of CC (PEG MG) for islet encapsulation and transplantation in clinically relevant sites without chronic immunosuppression.


Asunto(s)
Separación Celular/métodos , Diabetes Mellitus Experimental/terapia , Supervivencia de Injerto , Trasplante de Islotes Pancreáticos/instrumentación , Islotes Pancreáticos/citología , Neovascularización Fisiológica , Polietilenglicoles/química , Aloinjertos , Animales , Cápsulas , Islotes Pancreáticos/inmunología , Trasplante de Islotes Pancreáticos/métodos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
9.
J Chem Phys ; 148(13): 134108, 2018 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-29626875

RESUMEN

A machine learning assisted method is presented for molecular simulation of systems with rugged free energy landscapes. The method is general and can be combined with other advanced sampling techniques. In the particular implementation proposed here, it is illustrated in the context of an adaptive biasing force approach where, rather than relying on discrete force estimates, one can resort to a self-regularizing artificial neural network to generate continuous, estimated generalized forces. By doing so, the proposed approach addresses several shortcomings common to adaptive biasing force and other algorithms. Specifically, the neural network enables (1) smooth estimates of generalized forces in sparsely sampled regions, (2) force estimates in previously unexplored regions, and (3) continuous force estimates with which to bias the simulation, as opposed to biases generated at specific points of a discrete grid. The usefulness of the method is illustrated with three different examples, chosen to highlight the wide range of applicability of the underlying concepts. In all three cases, the new method is found to enhance considerably the underlying traditional adaptive biasing force approach. The method is also found to provide improvements over previous implementations of neural network assisted algorithms.

10.
J Am Soc Nephrol ; 28(5): 1370-1378, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28096308

RESUMEN

(Re)Building a Kidney is a National Institute of Diabetes and Digestive and Kidney Diseases-led consortium to optimize approaches for the isolation, expansion, and differentiation of appropriate kidney cell types and the integration of these cells into complex structures that replicate human kidney function. The ultimate goals of the consortium are two-fold: to develop and implement strategies for in vitro engineering of replacement kidney tissue, and to devise strategies to stimulate regeneration of nephrons in situ to restore failing kidney function. Projects within the consortium will answer fundamental questions regarding human gene expression in the developing kidney, essential signaling crosstalk between distinct cell types of the developing kidney, how to derive the many cell types of the kidney through directed differentiation of human pluripotent stem cells, which bioengineering or scaffolding strategies have the most potential for kidney tissue formation, and basic parameters of the regenerative response to injury. As these projects progress, the consortium will incorporate systematic investigations in physiologic function of in vitro and in vivo differentiated kidney tissue, strategies for engraftment in experimental animals, and development of therapeutic approaches to activate innate reparative responses.


Asunto(s)
Riñón/citología , Riñón/fisiología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Separación Celular/métodos , Humanos , Células Madre Pluripotentes Inducidas , Riñón/crecimiento & desarrollo , Regeneración , Técnicas de Cultivo de Tejidos/métodos , Andamios del Tejido
11.
J Allergy Clin Immunol ; 140(5): 1339-1350, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28343701

RESUMEN

BACKGROUND: Newborns display distinct immune responses, leaving them vulnerable to infections and impairing immunization. Targeting newborn dendritic cells (DCs), which integrate vaccine signals into adaptive immune responses, might enable development of age-specific vaccine formulations to overcome suboptimal immunization. OBJECTIVE: Small-molecule imidazoquinoline Toll-like receptor (TLR) 8 agonists robustly activate newborn DCs but can result in reactogenicity when delivered in soluble form. We used rational engineering and age- and species-specific modeling to construct and characterize polymer nanocarriers encapsulating a TLR8 agonist, allowing direct intracellular release after selective uptake by DCs. METHODS: Chemically similar but morphologically distinct nanocarriers comprised of amphiphilic block copolymers were engineered for targeted uptake by murine DCs in vivo, and a range of TLR8 agonist-encapsulating polymersome formulations were then synthesized. Novel 96-well in vitro assays using neonatal human monocyte-derived DCs and humanized TLR8 mouse bone marrow-derived DCs enabled benchmarking of the TLR8 agonist-encapsulating polymersome formulations against conventional adjuvants and licensed vaccines, including live attenuated BCG vaccine. Immunogenicity of the TLR8 agonist adjuvanted antigen 85B (Ag85B)/peptide 25-loaded BCG-mimicking nanoparticle formulation was evaluated in vivo by using humanized TLR8 neonatal mice. RESULTS: Although alum-adjuvanted vaccines induced modest costimulatory molecule expression, limited TH-polarizing cytokine production, and significant cell death, BCG induced a robust adult-like maturation profile of neonatal DCs. Remarkably, TLR8 agonist polymersomes induced not only newborn DC maturation profiles similar to those induced by BCG but also stronger IL-12p70 production. On subcutaneous injection to neonatal mice, the TLR8 agonist-adjuvanted Ag85B peptide 25 formulation was comparable with BCG in inducing Ag85B-specific CD4+ T-cell numbers. CONCLUSION: TLR8 agonist-encapsulating polymersomes hold substantial potential for early-life immunization against intracellular pathogens. Overall, our study represents a novel approach for rational design of early-life vaccines.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Vacuna BCG/inmunología , Células Dendríticas/inmunología , Imidazoles/administración & dosificación , Monocitos/inmunología , Nanopartículas/administración & dosificación , Quinolinas/administración & dosificación , Inmunidad Adaptativa , Animales , Animales Recién Nacidos , Biomimética , Linfocitos T CD4-Positivos/inmunología , Células Cultivadas , Citocinas/metabolismo , Humanos , Imidazoles/química , Imidazoles/farmacología , Inmunidad Innata , Inmunomodulación , Recién Nacido , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Nanopartículas/química , Polímeros/química , Quinolinas/química , Quinolinas/farmacología , Receptor Toll-Like 8/agonistas , Vacunación
12.
Proc Natl Acad Sci U S A ; 111(29): 10514-9, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24982192

RESUMEN

Encapsulation of islets of Langerhans may represent a way to transplant islets in the absence of immunosuppression. Traditional methods for encapsulation lead to diffusional limitations imposed by the size of the capsules (600-1,000 µm in diameter), which results in core hypoxia and delayed insulin secretion in response to glucose. Moreover, the large volume of encapsulated cells does not allow implantation in sites that might be more favorable to islet cell engraftment. To address these issues, we have developed an encapsulation method that allows conformal coating of islets through microfluidics and minimizes capsule size and graft volume. In this method, capsule thickness, rather than capsule diameter, is constant and tightly defined by the microdevice geometry and the rheological properties of the immiscible fluids used for encapsulation within the microfluidic system. We have optimized the method both computationally and experimentally, and found that conformal coating allows for complete encapsulation of islets with a thin (a few tens of micrometers) continuous layer of hydrogel. Both in vitro and in vivo in syngeneic murine models of islet transplantation, the function of conformally coated islets was not compromised by encapsulation and was comparable to that of unencapsulated islets. We have further demonstrated that the structural support conferred by the coating materials protected islets from the loss of function experienced by uncoated islets during ex vivo culture.


Asunto(s)
Materiales Biocompatibles Revestidos/farmacología , Islotes Pancreáticos/efectos de los fármacos , Microfluídica/instrumentación , Alginatos/farmacología , Animales , Agregación Celular , Simulación por Computador , Diseño de Equipo , Ácido Glucurónico/farmacología , Ácidos Hexurónicos/farmacología , Hidrodinámica , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Ratones , Ratones Endogámicos C57BL , Microesferas , Modelos Biológicos , Polietilenglicoles/farmacología , Reproducibilidad de los Resultados
13.
Proc Natl Acad Sci U S A ; 111(19): 6952-7, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24778233

RESUMEN

Clinical trials of therapeutic angiogenesis by vascular endothelial growth factor (VEGF) gene delivery failed to show efficacy. Major challenges include the need to precisely control in vivo distribution of growth factor dose and duration of expression. Recombinant VEGF protein delivery could overcome these issues, but rapid in vivo clearance prevents the stabilization of induced angiogenesis. Here, we developed an optimized fibrin platform for controlled delivery of recombinant VEGF, to robustly induce normal, stable, and functional angiogenesis. Murine VEGF164 was fused to a sequence derived from α2-plasmin inhibitor (α2-PI1-8) that is a substrate for the coagulation factor fXIIIa, to allow its covalent cross-linking into fibrin hydrogels and release only by enzymatic cleavage. An α2-PI1-8-fused variant of the fibrinolysis inhibitor aprotinin was used to control the hydrogel degradation rate, which determines both the duration and effective dose of factor release. An optimized aprotinin-α2-PI1-8 concentration ensured ideal degradation over 4 wk. Under these conditions, fibrin-α2-PI1-8-VEGF164 allowed exquisitely dose-dependent angiogenesis: concentrations ≥25 µg/mL caused widespread aberrant vascular structures, but a 500-fold concentration range (0.01-5.0 µg/mL) induced exclusively normal, mature, nonleaky, and perfused capillaries, which were stable after 3 mo. Optimized delivery of fibrin-α2-PI1-8-VEGF164 was therapeutically effective both in ischemic hind limb and wound-healing models, significantly improving angiogenesis, tissue perfusion, and healing rate. In conclusion, this optimized platform ensured (i) controlled and highly tunable delivery of VEGF protein in ischemic tissue and (ii) stable and functional angiogenesis without introducing genetic material and with a limited and controllable duration of treatment. These findings suggest a strategy to improve safety and efficacy of therapeutic angiogenesis.


Asunto(s)
Fibrina/farmacocinética , Técnicas de Transferencia de Gen , Isquemia/terapia , Neovascularización Fisiológica/fisiología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/farmacocinética , Animales , Femenino , Geles/farmacocinética , Terapia Genética/métodos , Miembro Posterior , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos , Ratones SCID , Músculo Esquelético/irrigación sanguínea , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacocinética , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
Nano Lett ; 16(4): 2159-67, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26918518

RESUMEN

In the past decade, nanomaterials have made their way into a variety of technologies in solar energy, enhancing the performance by taking advantage of the phenomena inherent to the nanoscale. Recent examples exploit plasmonic core/shell nanoparticles to achieve efficient direct steam generation, showing great promise of such nanoparticles as a useful material for solar applications. In this paper, we demonstrate a novel technique for fabricating bimetallic hollow mesoporous plasmonic nanoshells that yield a higher solar vapor generation rate compared with their solid-core counterparts. On the basis of a combination of nanomasking and incomplete galvanic replacement, the hollow plasmonic nanoshells can be fabricated with tunable absorption and minimized scattering. When exposed to sun light, each hollow nanoshell generates vapor bubbles simultaneously from the interior and exterior. The vapor nucleating from the interior expands and diffuses through the pores and combines with the bubbles formed on the outer wall. The lack of a solid core significantly accelerates the initial vapor nucleation and the overall steam generation dynamics. More importantly, because the density of the hollow porous nanoshells is essentially equal to the surrounding host medium these particles are much less prone to sedimentation, a problem that greatly limits the performance and implementation of standard nanoparticle dispersions.

15.
Proc Natl Acad Sci U S A ; 110(1): E60-8, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23248266

RESUMEN

Antigens derived from apoptotic cell debris can drive clonal T-cell deletion or anergy, and antigens chemically coupled ex vivo to apoptotic cell surfaces have been shown correspondingly to induce tolerance on infusion. Reasoning that a large number of erythrocytes become apoptotic (eryptotic) and are cleared each day, we engineered two different antigen constructs to target the antigen to erythrocyte cell surfaces after i.v. injection, one using a conjugate with an erythrocyte-binding peptide and another using a fusion with an antibody fragment, both targeting the erythrocyte-specific cell surface marker glycophorin A. Here, we show that erythrocyte-binding antigen is collected much more efficiently than free antigen by splenic and hepatic immune cell populations and hepatocytes, and that it induces antigen-specific deletional responses in CD4(+) and CD8(+) T cells. We further validated T-cell deletion driven by erythrocyte-binding antigens using a transgenic islet ß cell-reactive CD4(+) T-cell adoptive transfer model of autoimmune type 1 diabetes: Treatment with the peptide antigen fused to an erythrocyte-binding antibody fragment completely prevented diabetes onset induced by the activated, autoreactive CD4(+) T cells. Thus, we report a translatable modular biomolecular approach with which to engineer antigens for targeted binding to erythrocyte cell surfaces to induce antigen-specific CD4(+) and CD8(+) T-cell deletion toward exogenous antigens and autoantigens.


Asunto(s)
Apoptosis/inmunología , Antígenos de Grupos Sanguíneos/biosíntesis , Anergia Clonal/inmunología , Diabetes Mellitus/inmunología , Eritrocitos/metabolismo , Glicoforinas/metabolismo , Traslado Adoptivo , Secuencia de Aminoácidos , Análisis de Varianza , Animales , Glucemia/metabolismo , Antígenos de Grupos Sanguíneos/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Eritrocitos/fisiología , Femenino , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Péptidos/genética , Ingeniería de Proteínas/métodos
16.
Proc Natl Acad Sci U S A ; 110(12): 4563-8, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23487783

RESUMEN

By binding growth factors (GFs), the ECM tightly regulates their activity. We recently reported that the heparin-binding domain II of fibronectin acts as a promiscuous high-affinity GF-binding domain. Here we hypothesized that fibrin, the provisional ECM during tissue repair, also could be highly promiscuous in its GF-binding capacity. Using multiple affinity-based assays, we found that fibrin(ogen) and its heparin-binding domain bind several GFs from the PDGF/VEGF and FGF families and some GFs from the TGF-ß and neurotrophin families. Overall, we identified 15 unique binding interactions. The GF binding ability of fibrinogen caused prolonged retention of many of the identified GFs within fibrin. Thus, based on the promiscuous and high-affinity interactions in fibrin, GF binding may be one of fibrin's main physiological functions, and these interactions may potentially play an important and ubiquitous role during tissue repair. To prove this role in a gain-of-function model, we incorporated the heparin-binding domain of fibrin into a synthetic fibrin-mimetic matrix. In vivo, the multifunctional synthetic matrix could fully mimic the effect of fibrin in a diabetic mouse model of impaired wound healing, demonstrating the benefits of generating a hybrid biomaterial consisting of a synthetic polymeric scaffold and recombinant bioactive ECM domains. The reproduction of GF-ECM interactions with a fibrin-mimetic matrix could be clinically useful, and has the significant benefit of a more straightforward regulatory path associated with chemical synthesis rather than human sourcing.


Asunto(s)
Materiales Biomiméticos/farmacología , Matriz Extracelular , Fibrina/farmacología , Fibrinógeno/farmacología , Péptidos y Proteínas de Señalización Intercelular/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Materiales Biomiméticos/química , Modelos Animales de Enfermedad , Fibrina/química , Fibrinógeno/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Masculino , Ratones , Ratones Mutantes , Unión Proteica
17.
Proc Natl Acad Sci U S A ; 110(49): 19902-7, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24248387

RESUMEN

In subunit vaccines, strong CD8(+) T-cell responses are desired, yet they are elusive at reasonable adjuvant doses. We show that targeting adjuvant to the lymph node (LN) via ultrasmall polymeric nanoparticles (NPs), which rapidly drain to the LN after intradermal injection, greatly enhances adjuvant efficacy at low doses. Coupling CpG-B or CpG-C oligonucleotides to NPs led to better dual-targeting of adjuvant and antigen (codelivered on separate NPs) in cross-presenting dendritic cells compared with free adjuvant. This led to enhanced dendritic cell maturation and T helper 1 (Th1)-cytokine secretion, in turn driving stronger effector CD8(+) T-cell activation with enhanced cytolytic profiles and, importantly, more powerful memory recall. With only 4 µg CpG, NP-CpG-B could substantially protect mice from syngeneic tumor challenge, even after 4 mo of vaccination, compared with free CpG-B. Together, these results show that nanocarriers can enhance vaccine efficacy at a low adjuvant dose for inducing potent and long-lived cellular immunity.


Asunto(s)
Adyuvantes Inmunológicos/metabolismo , Linfocitos T CD8-positivos/inmunología , Inmunidad Celular/inmunología , Memoria Inmunológica/inmunología , Nanopartículas/metabolismo , Neoplasias/prevención & control , Oligodesoxirribonucleótidos/metabolismo , Animales , Sistemas de Liberación de Medicamentos/métodos , Inyecciones Intradérmicas , Ganglios Linfáticos/citología , Ratones , Nanopartículas/administración & dosificación , Oligodesoxirribonucleótidos/inmunología , Vacunas de Subunidad/inmunología
18.
Cancer Immunol Immunother ; 64(8): 1033-46, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25982370

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that suppress effector T cell responses and can reduce the efficacy of cancer immunotherapies. We previously showed that ultra-small polymer nanoparticles efficiently drain to the lymphatics after intradermal injection and target antigen-presenting cells, including Ly6c(hi) Ly6g(-) monocytic MDSCs (Mo-MDSCs), in skin-draining lymph nodes (LNs) and spleen. Here, we developed ultra-small polymer micelles loaded with 6-thioguanine (MC-TG), a cytotoxic drug used in the treatment of myelogenous leukemia, with the aim of killing Mo-MDSCs in tumor-bearing mice and thus enhancing T cell-mediated anti-tumor responses. We found that 2 days post-injection in tumor-bearing mice (B16-F10 melanoma or E.G7-OVA thymoma), MC-TG depleted Mo-MDSCs in the spleen, Ly6c(lo) Ly6g(+) granulocytic MDSCs (G-MDSCs) in the draining LNs, and Gr1(int) Mo-MDSCs in the tumor. In both tumor models, MC-TG decreased the numbers of circulating Mo- and G-MDSCs, as well as of Ly6c(hi) macrophages, for up to 7 days following a single administration. MDSC depletion was dose dependent and more effective with MC-TG than with equal doses of free TG. Finally, we tested whether this MDSC-depleting strategy might enhance cancer immunotherapies in the B16-F10 melanoma model. We found that MC-TG significantly improved the efficacy of adoptively transferred, OVA-specific CD8(+) T cells in melanoma cells expressing OVA. These findings highlight the capacity of MC-TG in depleting MDSCs in the tumor microenvironment and show promise in promoting anti-tumor immunity when used in combination with T cell immunotherapies.


Asunto(s)
Linfocitos T CD8-positivos/trasplante , Inmunoterapia Adoptiva/métodos , Melanoma Experimental/terapia , Células Mieloides/fisiología , Tioguanina/administración & dosificación , Timoma/terapia , Animales , Apoptosis/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Femenino , Humanos , Inmunización , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Micelas , Polímeros , Timoma/inmunología , Microambiente Tumoral/efectos de los fármacos
19.
Biotechnol Bioeng ; 112(9): 1916-26, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25786390

RESUMEN

With a view toward reduction of graft loss, we explored pancreatic islet transplantation within fibrin matrices rendered pro-angiogenic by incorporation of minimal doses of vascular endothelial growth factor-A165 and platelet-derived growth factor-BB presented complexed to a fibrin-bound integrin-binding fibronectin domain. Engineered matrices allowed for extended release of pro-angiogenic factors and for their synergistic signaling with extracellular matrix-binding domains in the post-transplant period. Aprotinin addition delayed matrix degradation and prolonged pro-angiogenic factor availability within the graft. Both subcutaneous (SC) and epididymal fat pad (EFP) sites were evaluated. We show that in the SC site, diabetes reversal in mice transplanted with 1,000 IEQ of syngeneic islets was not observed for islets transplanted alone, while engineered matrices resulted in a diabetes median reversal time (MDRT) of 38 days. In the EFP site, the MDRT with 250 IEQ of syngeneic islets within the engineered matrices was 24 days versus 86 days for islets transplanted alone. Improved function of engineered grafts was associated with enhanced and earlier (by day 7) angiogenesis. Our findings show that by engineering the transplant site to promote prompt re-vascularization, engraftment and long-term function of islet grafts can be improved in relevant extrahepatic sites.


Asunto(s)
Fibrina/química , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Becaplermina , Proliferación Celular/efectos de los fármacos , Humanos , Hidrogeles/química , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-sis/química , Proteínas Proto-Oncogénicas c-sis/deficiencia , Proteínas Proto-Oncogénicas c-sis/farmacología , Factor A de Crecimiento Endotelial Vascular/química
20.
Nature ; 462(7272): 449-60, 2009 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-19940915

RESUMEN

The engineering of materials that can modulate the immune system is an emerging field that is developing alongside immunology. For therapeutic ends such as vaccine development, materials are now being engineered to deliver antigens through specific intracellular pathways, allowing better control of the way in which antigens are presented to one of the key types of immune cell, T cells. Materials are also being designed as adjuvants, to mimic specific 'danger' signals in order to manipulate the resultant cytokine environment, which influences how antigens are interpreted by T cells. In addition to offering the potential for medical advances, immunomodulatory materials can form well-defined model systems, helping to provide new insight into basic immunobiology.


Asunto(s)
Materiales Biocompatibles/farmacología , Bioingeniería/métodos , Factores Inmunológicos/inmunología , Animales , Presentación de Antígeno/efectos de los fármacos , Presentación de Antígeno/inmunología , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/química , Materiales Biocompatibles/uso terapéutico , Bioingeniería/tendencias , Activación de Complemento/efectos de los fármacos , Activación de Complemento/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Sistemas de Liberación de Medicamentos , Humanos , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/química , Factores Inmunológicos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA