Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Mater Sci Mater Med ; 24(5): 1217-27, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23386212

RESUMEN

Bio-active glass has been developed for use as a bone substitute with strong osteo-inductive capacity and the ability to form strong bonds with soft and hard tissue. The ability of this material to enhance tissue in-growth suggests its potential use as a substitute for the dental laminate of an osteo-odonto-keratoprosthesis. A preliminary in vitro investigation of porous bio-active glass as an OOKP skirt material was carried out. Porous glass structures were manufactured from bio-active glasses 1-98 and 28-04 containing varying oxide formulation (1-98, 28-04) and particle size range (250-315 µm for 1-98 and 28-04a, 315-500 µm for 28-04b). Dissolution of the porous glass structure and its effect on pH was measured. Structural 2D and 3D analysis of porous structures were performed. Cell culture experiments were carried out to study keratocyte adhesion and the inflammatory response induced by the porous glass materials. The dissolution results suggested that the porous structure made out of 1-98 dissolves faster than the structures made from glass 28-04. pH experiments showed that the dissolution of the porous glass increased the pH of the surrounding solution. The cell culture results showed that keratocytes adhered onto the surface of each of the porous glass structures, but cell adhesion and spreading was greatest for the 98a bio-glass. Cytokine production by all porous glass samples was similar to that of the negative control indicating that the glasses do not induce a cytokine driven inflammatory response. Cell culture results support the potential use of synthetic porous bio-glass as an OOKP skirt material in terms of limited inflammatory potential and capacity to induce and support tissue ingrowth.


Asunto(s)
Sustitutos de Huesos/química , Cerámica/química , Trasplante de Córnea/instrumentación , Prótesis e Implantes , Andamios del Tejido/química , Sustitutos de Huesos/farmacología , Adhesión Celular/efectos de los fármacos , Técnicas de Cultivo de Célula/instrumentación , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cerámica/farmacología , Queratocitos de la Córnea/citología , Queratocitos de la Córnea/metabolismo , Queratocitos de la Córnea/fisiología , Citocinas/metabolismo , Humanos , Ensayo de Materiales , Porosidad
2.
J Mech Behav Biomed Mater ; 4(8): 1700-8, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22098870

RESUMEN

In this study, the fabrication and properties of a synthetic keratoprosthesis skirt for use in osteo-odonto-keratoprosthesis (OOKP) surgery are discussed. In the search for a new material concept, bioactive glass and polymethyl methacrylate (PMMA)-based composites were prepared. Three different bioactive glasses (i.e. 45S5, S53P4 and 1-98) and one slowly resorbing glass, FL107, with two different forms (i.e. particles and porous glass structures) were employed in the fabrication of specimens. In in vitro studies, the dissolution behaviour in simulated aqueous humour, compressive properties, and pore formation of the composites were investigated. According to the results, FL107 dissolved very slowly (2.4% of the initial glass content in three weeks); thus, the pore formation of the FL107 composite was also observed to be restricted. The dissolution rates of the bioactive glass-PMMA composites were greater (12%-17%). These faster dissolving bioactive glass particles caused some porosity on the outermost surfaces of the composite. The slight surface porosity was also confirmed by a decrease in compressive properties. During six weeks' in vitro dissolution, the compressive strength of the test specimens containing particles decreased by 22% compared to values in dry conditions (90-107 MPa). These results indicate that the bioactive composites could be stable synthetic candidates for a keratoprosthesis skirt in the treatment of severely damaged or diseased cornea.


Asunto(s)
Materiales Biocompatibles/química , Córnea , Prótesis e Implantes , Vidrio/química , Fenómenos Mecánicos , Microscopía Electrónica de Rastreo , Polimetil Metacrilato/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA