Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Semin Cell Dev Biol ; 127: 17-36, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34949507

RESUMEN

Human pluripotent stem cells can differentiate into any cell type given appropriate signals and hence have been used to research early human development of many tissues and diseases. Here, we review the major biological factors that regulate cartilage and bone development through the three main routes of neural crest, lateral plate mesoderm and paraxial mesoderm. We examine how these routes have been used in differentiation protocols that replicate skeletal development using human pluripotent stem cells and how these methods have been refined and improved over time. Finally, we discuss how pluripotent stem cells can be employed to understand human skeletal genetic diseases with a developmental origin and phenotype, and how developmental protocols have been applied to gain a better understanding of these conditions.


Asunto(s)
Células Madre Pluripotentes , Huesos , Cartílago , Diferenciación Celular/fisiología , Humanos , Mesodermo , Cresta Neural , Células Madre Pluripotentes/metabolismo
2.
FASEB J ; 36(5): e22314, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35416346

RESUMEN

Epigenetic modification is a key driver of differentiation, and the deacetylase Sirtuin1 (SIRT1) is an established regulator of cell function, ageing, and articular cartilage homeostasis. Here we investigate the role of SIRT1 during development of chondrocytes by using human embryonic stem cells (hESCs). HESC-chondroprogenitors were treated with SIRT1 activator; SRT1720, or inhibitor; EX527, during differentiation. Activation of SIRT1 early in 3D-pellet culture led to significant increases in the expression of ECM genes for type-II collagen (COL2A1) and aggrecan (ACAN), and chondrogenic transcription factors SOX5 and ARID5B, with SOX5 ChIP analysis demonstrating enrichment on the chondrocyte specific -10 (A1) enhancer of ACAN. Unexpectedly, when SIRT1 was activated, while ACAN was enhanced, glycosaminoglycans (GAGs) were reduced, paralleled by down regulation of gene expression for N-acetylgalactosaminyltransferase type 1 (GALNT1) responsible for GAG chain initiation/elongation. A positive correlation between ARID5B and COL2A1 was observed, and co-IP assays indicated association of ARID5B with SIRT1, further suggesting that COL2A1 expression is promoted by an ARID5B-SIRT1 interaction. In conclusion, SIRT1 activation positively impacts on the expression of the main ECM proteins, while altering ECM composition and suppressing GAG content during human cartilage development. These results suggest that SIRT1 activity has a differential effect on GAGs and proteins in developing hESC-chondrocytes and could only be beneficial to cartilage development and matrix protein synthesis if balanced by addition of positive GAG mediators.


Asunto(s)
Cartílago Articular , Células Madre Embrionarias Humanas , Agrecanos/genética , Cartílago Articular/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Condrocitos/metabolismo , Condrogénesis , Glicosaminoglicanos/metabolismo , Humanos , Sirtuina 1/genética , Sirtuina 1/metabolismo
3.
Crit Rev Biotechnol ; 42(5): 774-793, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34488516

RESUMEN

Here, we review the use of human pluripotent stem cells for skeletal tissue engineering. A number of approaches have been used for generating cartilage and bone from both human embryonic stem cells and induced pluripotent stem cells. These range from protocols relying on intrinsic cell interactions and signals from co-cultured cells to those attempting to recapitulate the series of steps occurring during mammalian skeletal development. The importance of generating authentic tissues rather than just differentiated cells is emphasized and enabling technologies for doing this are reported. We also review the different methods for characterization of skeletal cells and constructs at the tissue and single-cell level, and indicate newer resources not yet fully utilized in this field. There have been many challenges in this research area but the technologies to overcome these are beginning to appear, often adopted from related fields. This makes it more likely that cost-effective and efficacious human pluripotent stem cell-engineered constructs may become available for skeletal repair in the near future.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Animales , Diferenciación Celular , Humanos , Mamíferos , Ingeniería de Tejidos
4.
PLoS One ; 18(1): e0280024, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36706111

RESUMEN

Developmentally, the articular joints are derived from lateral plate (LP) mesoderm. However, no study has produced both LP derived prechondrocytes and preosteoblasts from human pluripotent stem cells (hPSC) through a common progenitor in a chemically defined manner. Differentiation of hPSCs through the authentic route, via an LP-osteochondral progenitor (OCP), may aid understanding of human cartilage development and the generation of effective cell therapies for osteoarthritis. We refined our existing chondrogenic protocol, incorporating knowledge from development and other studies to produce a LP-OCP from which prechondrocyte- and preosteoblast-like cells can be generated. Results show the formation of an OCP, which can be further driven to prechondrocytes and preosteoblasts. Prechondrocytes cultured in pellets produced cartilage like matrix with lacunae and superficial flattened cells expressing lubricin. Additionally, preosteoblasts were able to generate a mineralised structure. This protocol can therefore be used to investigate further cartilage development and in the development of joint cartilage for potential treatments.


Asunto(s)
Cartílago Articular , Osteoartritis , Células Madre Pluripotentes , Humanos , Diferenciación Celular , Mesodermo , Condrogénesis
5.
Theranostics ; 12(8): 3963-3976, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664072

RESUMEN

The circadian clock in murine articular cartilage is a critical temporal regulatory mechanism for tissue homeostasis and osteoarthritis. However, translation of these findings into humans has been hampered by the difficulty in obtaining circadian time series human cartilage tissues. As such, a suitable model is needed to understand the initiation and regulation of circadian rhythms in human cartilage. Methods: We used a chondrogenic differentiation protocol on human embryonic stem cells (hESCs) as a proxy for early human chondrocyte development. Chondrogenesis was validated using histology and expression of pluripotency and differentiation markers. The molecular circadian clock was tracked in real time by lentiviral transduction of human clock gene luciferase reporters. Differentiation-coupled gene expression was assessed by RNAseq and differential expression analysis. Results: hESCs lacked functional circadian rhythms in clock gene expression. During chondrogenic differentiation, there was an expected reduction of pluripotency markers (e.g., NANOG and OCT4) and a significant increase of chondrogenic genes (SOX9, COL2A1 and ACAN). Histology of the 3D cartilage pellets at day 21 showed a matrix architecture resembling human cartilage, with readily detectable core clock proteins (BMAL1, CLOCK and PER2). Importantly, the circadian clocks in differentiating hESCs were activated between day 11 (end of the 2D stage) and day 21 (10 days after 3D differentiation) in the chondrogenic differentiation protocol. RNA sequencing revealed striking differentiation coupled changes in the expression levels of most clock genes and a range of clock regulators. Conclusions: The circadian clock is gradually activated through a differentiation-coupled mechanism in a human chondrogenesis model. These findings provide a human 3D chondrogenic model to investigate the role of the circadian clock during normal homeostasis and in diseases such as osteoarthritis.


Asunto(s)
Cartílago Articular , Células Madre Embrionarias Humanas , Osteoartritis , Animales , Cartílago Articular/metabolismo , Diferenciación Celular , Condrogénesis/genética , Ritmo Circadiano , Células Madre Embrionarias Humanas/metabolismo , Humanos , Ratones , Osteoartritis/metabolismo
6.
Cells ; 10(4)2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805168

RESUMEN

The growth factor TGFß and the mechanosensitive calcium-permeable cation channel TRPV4 are both important for the development and maintenance of many tissues. Although TRPV4 and TGFß both affect core cellular functions, how their signals are integrated is unknown. Here we show that pharmacological activation of TRPV4 significantly increased the canonical response to TGFß stimulation in chondrocytes. Critically, this increase was only observed when TRPV4 was activated after, but not before TGFß stimulation. The increase was prevented by pharmacological TRPV4 inhibition or knockdown and is calcium/CamKII dependent. RNA-seq analysis after TRPV4 activation showed enrichment for the TGFß signalling pathway and identified JUN and SP1 as key transcription factors involved in this response. TRPV4 modulation of TGFß signalling represents an important pathway linking mechanical signalling to tissue development and homeostasis.


Asunto(s)
Condrocitos/metabolismo , Transducción de Señal , Canales Catiónicos TRPV/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Calcio/metabolismo , Calmodulina/metabolismo , Bovinos , Condrocitos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Humanos , Leucina/análogos & derivados , Leucina/farmacología , Ratones , Proteínas Proto-Oncogénicas c-jun/metabolismo , RNA-Seq , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Transcripción Sp1/metabolismo , Sulfonamidas/farmacología , Factores de Tiempo
7.
ACS Synth Biol ; 9(11): 3067-3078, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33084303

RESUMEN

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor ß (TGFß) superfamily and have crucial roles during development; including mesodermal patterning and specification of renal, hepatic, and skeletal tissues. In vitro developmental models currently rely upon costly and unreliable recombinant BMP proteins that do not enable dynamic or precise activation of the BMP signaling pathway. Here, we report the development of an optogenetic BMP signaling system (optoBMP) that enables rapid induction of the canonical BMP signaling pathway driven by illumination with blue light. We demonstrate the utility of the optoBMP system in multiple human cell lines to initiate signal transduction through phosphorylation and nuclear translocation of SMAD1/5, leading to upregulation of BMP target genes including Inhibitors of DNA binding ID2 and ID4. Furthermore, we demonstrate how the optoBMP system can be used to fine-tune activation of the BMP signaling pathway through variable light stimulation. Optogenetic control of BMP signaling will enable dynamic and high-throughput intervention across a variety of applications in cellular and developmental systems.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Transducción de Señal/genética , Línea Celular , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Optogenética/métodos , Fosforilación/genética , Transactivadores/genética , Factor de Crecimiento Transformador beta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA