Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-39399973

RESUMEN

DNA/RNA-stable isotope probing (SIP) is a powerful tool to link in situ microbial activity to sequencing data. Every SIP dataset captures distinct information about microbial community metabolism, process rates, and population dynamics, offering valuable insights for a wide range of research questions. Data reuse maximizes the information derived from the labor and resource-intensive SIP approaches. Yet, a review of publicly available SIP sequencing metadata showed that critical information necessary for reproducibility and reuse was often missing. Here, we outline the Minimum Information for any Stable Isotope Probing Sequence (MISIP) according to the Minimum Information for any (x) Sequence (MIxS) framework and include examples of MISIP reporting for common SIP experiments. Our objectives are to expand the capacity of MIxS to accommodate SIP-specific metadata and guide SIP users in metadata collection when planning and reporting an experiment. The MISIP standard requires 5 metadata fields-isotope, isotopolog, isotopolog label, labeling approach, and gradient position-and recommends several fields that represent best practices in acquiring and reporting SIP sequencing data (e.g., gradient density and nucleic acid amount). The standard is intended to be used in concert with other MIxS checklists to comprehensively describe the origin of sequence data, such as for marker genes (MISIP-MIMARKS) or metagenomes (MISIP-MIMS), in combination with metadata required by an environmental extension (e.g., soil). The adoption of the proposed data standard will improve the reuse of any sequence derived from a SIP experiment and, by extension, deepen understanding of in situ biogeochemical processes and microbial ecology.


Asunto(s)
Marcaje Isotópico , Marcaje Isotópico/métodos , Reproducibilidad de los Resultados , Microbiota/genética , Metadatos , Metagenómica/métodos , Análisis de Secuencia de ADN/métodos , Metagenoma
2.
Methods Mol Biol ; 2802: 587-609, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38819573

RESUMEN

Comparative analysis of (meta)genomes necessitates aggregation, integration, and synthesis of well-annotated data using standards. The Genomic Standards Consortium (GSC) collaborates with the research community to develop and maintain the Minimum Information about any (x) Sequence (MIxS) reporting standard for genomic data. To facilitate the use of the GSC's MIxS reporting standard, we provide a description of the structure and terminology, how to navigate ontologies for required terms in MIxS, and demonstrate practical usage through a soil metagenome example.


Asunto(s)
Genómica , Metagenoma , Metagenómica , Metagenómica/métodos , Metagenómica/normas , Genómica/métodos , Genómica/normas , Metagenoma/genética , Bases de Datos Genéticas , Microbiología del Suelo
3.
Gigascience ; 112022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701374

RESUMEN

The increasingly multidisciplinary nature of scientific research necessitates a need for Open Data repositories that can archive data in support of publications in scientific journals. Recognising this need, even before GigaScience launched in 2012, GigaDB was already in place and taking data for a year before (making it 11 this year). Since GigaDB launched, there has been a consistent growth in this resource in terms of data volume, data discoverability and data re-use. In this commentary, we provide a retrospective of key changes over the last decade, and the role of Data Curation in enhancing the user experience. Furthermore we explore a much needed emphasis on enabling researchers to interact with and explore datasets prior to data download.


Asunto(s)
Curaduría de Datos , Estudios Retrospectivos
4.
Gigascience ; 6(9): 1-3, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28938718

RESUMEN

GigaScience is now 5 years old, having been launched at the 2012 Intelligent Systems for Molecular Biology conference. Anyone who has attended what is the largest computational biology conference since then has had the opportunity to join us for each birthday celebration-and receive 1 of our fun T-shirts as a party prize. Since launching, we have pushed our agenda of openness, transparency, reproducibility, and reusability. Here, we look back at our first 5 years and what we have done to forward our open science goals in scientific publishing. Our mainstay has been to create a process that allows the availability and publication of as many "research objects" as possible to create a more complete way of communicating how the research process is done.


Asunto(s)
Publicaciones Periódicas como Asunto/normas , Biología de Sistemas , Genómica , Publicaciones Periódicas como Asunto/tendencias
6.
Database (Oxford) ; 2014: bau018, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24622612

RESUMEN

Often papers are published where the underlying data supporting the research are not made available because of the limitations of making such large data sets publicly and permanently accessible. Even if the raw data are deposited in public archives, the essential analysis intermediaries, scripts or software are frequently not made available, meaning the science is not reproducible. The GigaScience journal is attempting to address this issue with the associated data storage and dissemination portal, the GigaScience database (GigaDB). Here we present the current version of GigaDB and reveal plans for the next generation of improvements. However, most importantly, we are soliciting responses from you, the users, to ensure that future developments are focused on the data storage and dissemination issues that still need resolving. Database URL: http://www.gigadb.org.


Asunto(s)
Bases de Datos Genéticas , Difusión de la Información , Autoria , Publicaciones , Reproducibilidad de los Resultados
7.
Biodivers Data J ; (1): e1013, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24723752

RESUMEN

We demonstrate how a classical taxonomic description of a new species can be enhanced by applying new generation molecular methods, and novel computing and imaging technologies. A cave-dwelling centipede, Eupolybothrus cavernicolus Komericki & Stoev sp. n. (Chilopoda: Lithobiomorpha: Lithobiidae), found in a remote karst region in Knin, Croatia, is the first eukaryotic species for which, in addition to the traditional morphological description, we provide a fully sequenced transcriptome, a DNA barcode, detailed anatomical X-ray microtomography (micro-CT) scans, and a movie of the living specimen to document important traits of its ex-situ behaviour. By employing micro-CT scanning in a new species for the first time, we create a high-resolution morphological and anatomical dataset that allows virtual reconstructions of the specimen and subsequent interactive manipulation to test the recently introduced 'cybertype' notion. In addition, the transcriptome was recorded with a total of 67,785 scaffolds, having an average length of 812 bp and N50 of 1,448 bp (see GigaDB). Subsequent annotation of 22,866 scaffolds was conducted by tracing homologs against current available databases, including Nr, SwissProt and COG. This pilot project illustrates a workflow of producing, storing, publishing and disseminating large data sets associated with a description of a new taxon. All data have been deposited in publicly accessible repositories, such as GigaScience GigaDB, NCBI, BOLD, Morphbank and Morphosource, and the respective open licenses used ensure their accessibility and re-usability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA