Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nucleic Acids Res ; 49(D1): D792-D802, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-32735679

RESUMEN

In recent years, large-scale oceanic sequencing efforts have provided a deeper understanding of marine microbial communities and their dynamics. These research endeavors require the acquisition of complex and varied datasets through large, interdisciplinary and collaborative efforts. However, no unifying framework currently exists for the marine science community to integrate sequencing data with physical, geological, and geochemical datasets. Planet Microbe is a web-based platform that enables data discovery from curated historical and on-going oceanographic sequencing efforts. In Planet Microbe, each 'omics sample is linked with other biological and physiochemical measurements collected for the same water samples or during the same sample collection event, to provide a broader environmental context. This work highlights the need for curated aggregation efforts that can enable new insights into high-quality metagenomic datasets. Planet Microbe is freely accessible from https://www.planetmicrobe.org/.


Asunto(s)
Organismos Acuáticos/microbiología , Análisis de Datos , Ambiente , Metagenómica , Planetas , Bases de Datos Genéticas , Estándares de Referencia , Interfaz Usuario-Computador
2.
BMC Med ; 18(1): 358, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33228639

RESUMEN

BACKGROUND: Diabetic foot ulcers (DFUs) account for the majority of all limb amputations and hospitalizations due to diabetes complications. With 30 million cases of diabetes in the USA and 500,000 new diagnoses each year, DFUs are a growing health problem. Diabetes patients with limb amputations have high postoperative mortality, a high rate of secondary amputation, prolonged inpatient hospital stays, and a high incidence of re-hospitalization. DFU-associated amputations constitute a significant burden on healthcare resources that cost more than 10 billion dollars per year. Currently, there is no way to identify wounds that will heal versus those that will become severely infected and require amputation. MAIN BODY: Accurate identification of causative pathogens in diabetic foot ulcers is a critical component of effective treatment. Compared to traditional culture-based methods, advanced sequencing technologies provide more comprehensive and unbiased profiling on wound microbiome with a higher taxonomic resolution, as well as functional annotation such as virulence and antibiotic resistance. In this review, we summarize the latest developments in defining the microbiology of diabetic foot ulcers that have been unveiled by sequencing technologies and discuss both the future promises and current limitations of these approaches. In particular, we highlight the temporal patterns and system dynamics in the diabetic foot microbiome monitored and measured during wound progression and medical intervention, and explore the feasibility of molecular diagnostics in clinics. CONCLUSION: Molecular tests conducted during weekly office visits to clean and examine DFUs would allow clinicians to offer personalized treatment and antibiotic therapy. Personalized wound management could reduce healthcare costs, improve quality of life for patients, and recoup lost productivity that is important not only to the patient, but also to healthcare payers and providers. These efforts could also improve antibiotic stewardship and control the rise of "superbugs" vital to global health.


Asunto(s)
Pie Diabético/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metabolómica/métodos , Microbiota/fisiología , Femenino , Humanos , Masculino
3.
PLoS Comput Biol ; 15(11): e1006863, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31756192

RESUMEN

Infections are a serious health concern worldwide, particularly in vulnerable populations such as the immunocompromised, elderly, and young. Advances in metagenomic sequencing availability, speed, and decreased cost offer the opportunity to supplement or even replace culture-based identification of pathogens with DNA sequence-based diagnostics. Adopting metagenomic analysis for clinical use requires that all aspects of the workflow are optimized and tested, including data analysis and computational time and resources. We tested the accuracy, sensitivity, and resource requirements of three top metagenomic taxonomic classifiers that use fast k-mer based algorithms: Centrifuge, CLARK, and KrakenUniq. Binary mixtures of bacteria showed all three reliably identified organisms down to 1% relative abundance, while only the relative abundance estimates of Centrifuge and CLARK were accurate. All three classifiers identified the organisms present in their default databases from a mock bacterial community of 20 organisms, but only Centrifuge had no false positives. In addition, Centrifuge required far less computational resources and time for analysis. Centrifuge analysis of metagenomes obtained from samples of VAP, infected DFUs, and FN showed Centrifuge identified pathogenic bacteria and one virus that were corroborated by culture or a clinical PCR assay. Importantly, in both diabetic foot ulcer patients, metagenomic sequencing identified pathogens 4-6 weeks before culture. Finally, we show that Centrifuge results were minimally affected by elimination of time-consuming read quality control and host screening steps.


Asunto(s)
Bacterias/genética , Bacterias/aislamiento & purificación , Metagenómica/métodos , Algoritmos , Código de Barras del ADN Taxonómico/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metagenoma , Microbiota/genética , Sensibilidad y Especificidad , Análisis de Secuencia de ADN/métodos
4.
PLoS Biol ; 14(8): e1002538, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27547938

RESUMEN

The detailed know-how to implement research protocols frequently remains restricted to the research group that developed the method or technology. This knowledge often exists at a level that is too detailed for inclusion in the methods section of scientific articles. Consequently, methods are not easily reproduced, leading to a loss of time and effort by other researchers. The challenge is to develop a method-centered collaborative platform to connect with fellow researchers and discover state-of-the-art knowledge. Protocols.io is an open-access platform for detailing, sharing, and discussing molecular and computational protocols that can be useful before, during, and after publication of research results.


Asunto(s)
Investigación Biomédica/métodos , Instrucción por Computador/métodos , Difusión de la Información/métodos , Proyectos de Investigación , Investigadores , Teléfono Celular , Conducta Cooperativa , Humanos , Internet
5.
Proc Natl Acad Sci U S A ; 111(29): 10714-9, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25002514

RESUMEN

Long-standing questions in marine viral ecology are centered on understanding how viral assemblages change along gradients in space and time. However, investigating these fundamental ecological questions has been challenging due to incomplete representation of naturally occurring viral diversity in single gene- or morphology-based studies and an inability to identify up to 90% of reads in viral metagenomes (viromes). Although protein clustering techniques provide a significant advance by helping organize this unknown metagenomic sequence space, they typically use only ∼75% of the data and rely on assembly methods not yet tuned for naturally occurring sequence variation. Here, we introduce an annotation- and assembly-free strategy for comparative metagenomics that combines shared k-mer and social network analyses (regression modeling). This robust statistical framework enables visualization of complex sample networks and determination of ecological factors driving community structure. Application to 32 viromes from the Pacific Ocean Virome dataset identified clusters of samples broadly delineated by photic zone and revealed that geographic region, depth, and proximity to shore were significant predictors of community structure. Within subsets of this dataset, depth, season, and oxygen concentration were significant drivers of viral community structure at a single open ocean station, whereas variability along onshore-offshore transects was driven by oxygen concentration in an area with an oxygen minimum zone and not depth or proximity to shore, as might be expected. Together these results demonstrate that this highly scalable approach using complete metagenomic network-based comparisons can both test and generate hypotheses for ecological investigation of viral and microbial communities in nature.


Asunto(s)
Redes Reguladoras de Genes , Biología Marina , Metagenómica , Microbiota/genética , Modelos Biológicos , Océanos y Mares , Virus/genética , Teorema de Bayes , Genes Virales , Océano Pacífico , Estaciones del Año
6.
BMC Med ; 13: 2, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25564342

RESUMEN

Were he alive today, would Louis Pasteur still champion culture methods he pioneered over 150 years ago for identifying bacterial pathogens? Or, might he suggest that new molecular techniques may prove a better way forward for quickly detecting the true microbial diversity of wounds? As modern clinicians faced with treating complex patients with diabetic foot infections (DFI), should we still request venerated and familiar culture and sensitivity methods, or is it time to ask for newer molecular tests, such as 16S rRNA gene sequencing? Or, are molecular techniques as yet too experimental, non-specific and expensive for current clinical use? While molecular techniques help us to identify more microorganisms from a DFI, can they tell us 'who done it?', that is, which are the causative pathogens and which are merely colonizers? Furthermore, can molecular techniques provide clinically relevant, rapid information on the virulence of wound isolates and their antibiotic sensitivities? We herein review current knowledge on the microbiology of DFI, from standard culture methods to the current era of rapid and comprehensive 'crime scene investigation' (CSI) techniques.


Asunto(s)
Bacterias/genética , Infecciones Bacterianas/diagnóstico , Pie Diabético/microbiología , Bacterias/aislamiento & purificación , Infecciones Bacterianas/microbiología , Carga Bacteriana , Humanos , Metagenómica , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S , Infecciones Estafilocócicas , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Factores de Virulencia/genética
7.
J Surg Res ; 189(2): 193-7, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24721602

RESUMEN

BACKGROUND: The applications for rapid prototyping have expanded dramatically over the last 20 y. In recent years, additive manufacturing has been intensely investigated for surgical implants, tissue scaffolds, and organs. There is, however, scant literature to date that has investigated the viability of three-dimensional (3D) printing of surgical instruments. MATERIALS AND METHODS: Using a fused deposition modeling printer, an Army/Navy surgical retractor was replicated from polylactic acid (PLA) filament. The retractor was sterilized using standard Food and Drug Administration approved glutaraldehyde protocols, tested for bacteria by polymerase chain reaction, and stressed until fracture to determine if the printed instrument could tolerate force beyond the demands of an operating room (OR). RESULTS: Printing required roughly 90 min. The instrument tolerated 13.6 kg of tangential force before failure, both before and after exposure to the sterilant. Freshly extruded PLA from the printer was sterile and produced no polymerase chain reaction product. Each instrument weighed 16 g and required only $0.46 of PLA. CONCLUSIONS: Our estimates place the cost per unit of a 3D-printed retractor to be roughly 1/10th the cost of a stainless steel instrument. The PLA Army/Navy retractor is strong enough for the demands of the OR. Freshly extruded PLA in a clean environment, such as an OR, would produce a sterile ready-to-use instrument. Because of the unprecedented accessibility of 3D printing technology world wide and the cost efficiency of these instruments, there are far reaching implications for surgery in some underserved and less developed parts of the world.


Asunto(s)
Diseño Asistido por Computadora/tendencias , Instrumentos Quirúrgicos/tendencias , Imagenología Tridimensional , Ácido Láctico , Ensayo de Materiales , Poliésteres , Polímeros , Esterilización
8.
Environ Microbiol ; 15(5): 1428-40, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22845467

RESUMEN

Viruses have global impact through mortality, nutrient cycling and horizontal gene transfer, yet their study is limited by complex methodologies with little validation. Here, we use triplicate metagenomes to compare common aquatic viral concentration and purification methods across four combinations as follows: (i) tangential flow filtration (TFF) and DNase + CsCl, (ii) FeCl3 precipitation and DNase, (iii) FeCl3 precipitation and DNase + CsCl and (iv) FeCl3 precipitation and DNase + sucrose. Taxonomic data (30% of reads) suggested that purification methods were statistically indistinguishable at any taxonomic level while concentration methods were significantly different at family and genus levels. Specifically, TFF-concentrated viral metagenomes had significantly fewer abundant viral types (Podoviridae and Phycodnaviridae) and more variability among Myoviridae than FeCl3 -precipitated viral metagenomes. More comprehensive analyses using protein clusters (66% of reads) and k-mers (100% of reads) showed 50-53% of these data were common to all four methods, and revealed trace bacterial DNA contamination in TFF-concentrated metagenomes and one of three replicates concentrated using FeCl3 and purified by DNase alone. Shared k-mer analyses also revealed that polymerases used in amplification impact the resulting metagenomes, with TaKaRa enriching for 'rare' reads relative to PfuTurbo. Together these results provide empirical data for making experimental design decisions in culture-independent viral ecology studies.


Asunto(s)
Metagenómica , Virología/métodos , Virus/genética , Virus/aislamiento & purificación , Microbiología del Agua , Biodiversidad , Reproducibilidad de los Resultados , Agua de Mar/virología , Proteínas Virales/análisis , Proteínas Virales/genética
9.
Microbiome Res Rep ; 2(4): 27, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38058765

RESUMEN

Aim: Comparative metagenomic analysis requires measuring a pairwise similarity between metagenomes in the dataset. Reference-based methods that compute a beta-diversity distance between two metagenomes are highly dependent on the quality and completeness of the reference database, and their application on less studied microbiota can be challenging. On the other hand, de-novo comparative metagenomic methods only rely on the sequence composition of metagenomes to compare datasets. While each one of these approaches has its strengths and limitations, their comparison is currently limited. Methods: We developed sets of simulated short-reads metagenomes to (1) compare k-mer-based and taxonomy-based distances and evaluate the impact of technical and biological variables on these metrics and (2) evaluate the effect of k-mer sketching and filtering. We used a real-world metagenomic dataset to provide an overview of the currently available tools for de novo metagenomic comparative analysis. Results: Using simulated metagenomes of known composition and controlled error rate, we showed that k-mer-based distance metrics were well correlated to the taxonomic distance metric for quantitative Beta-diversity metrics, but the correlation was low for presence/absence distances. The community complexity in terms of taxa richness and the sequencing depth significantly affected the quality of the k-mer-based distances, while the impact of low amounts of sequence contamination and sequencing error was limited. Finally, we benchmarked currently available de-novo comparative metagenomic tools and compared their output on two datasets of fecal metagenomes and showed that most k-mer-based tools were able to recapitulate the data structure observed using taxonomic approaches. Conclusion: This study expands our understanding of the strength and limitations of k-mer-based de novo comparative metagenomic approaches and aims to provide concrete guidelines for researchers interested in applying these approaches to their metagenomic datasets.

10.
Front Microbiol ; 14: 1078760, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36760501

RESUMEN

Introduction: As new computational tools for detecting phage in metagenomes are being rapidly developed, a critical need has emerged to develop systematic benchmarks. Methods: In this study, we surveyed 19 metagenomic phage detection tools, 9 of which could be installed and run at scale. Those 9 tools were assessed on several benchmark challenges. Fragmented reference genomes are used to assess the effects of fragment length, low viral content, phage taxonomy, robustness to eukaryotic contamination, and computational resource usage. Simulated metagenomes are used to assess the effects of sequencing and assembly quality on the tool performances. Finally, real human gut metagenomes and viromes are used to assess the differences and similarities in the phage communities predicted by the tools. Results: We find that the various tools yield strikingly different results. Generally, tools that use a homology approach (VirSorter, MARVEL, viralVerify, VIBRANT, and VirSorter2) demonstrate low false positive rates and robustness to eukaryotic contamination. Conversely, tools that use a sequence composition approach (VirFinder, DeepVirFinder, Seeker), and MetaPhinder, have higher sensitivity, including to phages with less representation in reference databases. These differences led to widely differing predicted phage communities in human gut metagenomes, with nearly 80% of contigs being marked as phage by at least one tool and a maximum overlap of 38.8% between any two tools. While the results were more consistent among the tools on viromes, the differences in results were still significant, with a maximum overlap of 60.65%. Discussion: Importantly, the benchmark datasets developed in this study are publicly available and reusable to enable the future comparability of new tools developed.

11.
Sci Rep ; 12(1): 6889, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477946

RESUMEN

Skin disorders are one of the most common complications of type II diabetes (T2DM). Long-term effects of high blood glucose leave individuals with T2DM more susceptible to cutaneous diseases, but its underlying molecular mechanisms are unclear. Network-based methods consider the complex interactions between genes which can complement the analysis of single genes in previous research. Here, we use network analysis and topological properties to systematically investigate dysregulated gene co-expression patterns in type II diabetic skin with skin samples from the Genotype-Tissue Expression database. Our final network consisted of 8812 genes from 73 subjects with T2DM and 147 non-T2DM subjects matched for age, sex, and race. Two gene modules significantly related to T2DM were functionally enriched in the pathway lipid metabolism, activated by PPARA and SREBF (SREBP). Transcription factors KLF10, KLF4, SP1, and microRNA-21 were predicted to be important regulators of gene expression in these modules. Intramodular analysis and betweenness centrality identified NCOA6 as the hub gene while KHSRP and SIN3B are key coordinators that influence molecular activities differently between T2DM and non-T2DM populations. We built a TF-miRNA-mRNA regulatory network to reveal the novel mechanism (miR-21-PPARA-NCOA6) of dysregulated keratinocyte proliferation, differentiation, and migration in diabetic skin, which may provide new insights into the susceptibility of skin disorders in T2DM patients. Hub genes and key coordinators may serve as therapeutic targets to improve diabetic skincare.


Asunto(s)
Diabetes Mellitus Tipo 2 , MicroARNs , Diabetes Mellitus Tipo 2/genética , Redes Reguladoras de Genes , Humanos , MicroARNs/genética , Piel/metabolismo , Factores de Transcripción/metabolismo
12.
Gigascience ; 122022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-37941395

RESUMEN

BACKGROUND: The proliferation of metagenomic sequencing technologies has enabled novel insights into the functional genomic potentials and taxonomic structure of microbial communities. However, cyberinfrastructure efforts to manage and enable the reproducible analysis of sequence data have not kept pace. Thus, there is increasing recognition of the need to make metagenomic data discoverable within machine-searchable frameworks compliant with the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles for data stewardship. Although a variety of metagenomic web services exist, none currently leverage the hierarchically structured terminology encoded within common life science ontologies to programmatically discover data. RESULTS: Here, we integrate large-scale marine metagenomic datasets with community-driven life science ontologies into a novel FAIR web service. This approach enables the retrieval of data discovered by intersecting the knowledge represented within ontologies against the functional genomic potential and taxonomic structure computed from marine sequencing data. Our findings highlight various microbial functional and taxonomic patterns relevant to the ecology of prokaryotes in various aquatic environments. CONCLUSIONS: In this work, we present and evaluate a novel Semantic Web architecture that can be used to ask novel biological questions of existing marine metagenomic datasets. Finally, the FAIR ontology searchable data products provided by our API can be leveraged by future research efforts.


Asunto(s)
Ecología , Microbiota , Microbiota/genética , Metagenoma , Metagenómica
13.
Pharmacotherapy ; 42(2): 165-176, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34820870

RESUMEN

Response to cardiovascular drugs can vary greatly between individuals, and the role of the microbiome in this variability is being increasingly appreciated. Recent evidence indicates that bacteria and other microbes are responsible for direct and indirect effects on drug efficacy and toxicity. Pharmacomicrobiomics aims to uncover variability in drug response due to microbes in the human body, which may alter drug disposition through microbial metabolism, interference by microbial metabolites, or modification of host enzymes. In this review, we present recent advances in our understanding of the interplay between microbes, host metabolism, and cardiovascular drugs. We report numerous cardiovascular drugs with evidence of, or potential for, gut-microbe interactions. However, the effects of gut microbiota on many cardiovascular drugs are yet uninvestigated. Finally, we consider potential clinical applications for the described findings.


Asunto(s)
Fármacos Cardiovasculares , Microbioma Gastrointestinal , Microbiota , Bacterias , Humanos
14.
Plant J ; 63(6): 990-1003, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20626650

RESUMEN

Rapid progress in comparative genomics among the grasses has revealed similar gene content and order despite exceptional differences in chromosome size and number. Large- and small-scale genomic variations are of particular interest, especially among cultivated and wild species, as they encode rapidly evolving features that may be important in adaptation to particular environments. We present a genome-wide study of intermediate-sized structural variation (SV) among rice (Oryza sativa) and three of its closest relatives in the genus Oryza (Oryza nivara, Oryza rufipogon and Oryza glaberrima). We computationally identified regional expansions, contractions and inversions in the Oryza species genomes relative to O. sativa by combining data from paired-end clone alignments to the O. sativa reference genome and physical maps. A subset of the computational predictions was validated using a new approach for BAC size determination. The result was a confirmed catalog of 674 expansions (25-38 Mb) and 611 (4-19 Mb) contractions, and 140 putative inversions (14-19 Mb) between the three Oryza species and O. sativa. In the expanded regions unique to O. sativa we found enrichment in transposable elements (TEs): long terminal repeats (LTRs) were randomly located across the chromosomes, and their insertion times corresponded to the date of the A genome radiation. Also, rice-expanded regions contained an over-representation of single-copy genes related to defense factors in the environment. This catalog of confirmed SV in reference to O. sativa provides an entry point for future research in genome evolution, speciation, domestication and novel gene discovery.


Asunto(s)
Oryza/genética , Evolución Molecular , Genoma de Planta/genética , Genómica , Oryza/anatomía & histología , Fenotipo
15.
ISME Commun ; 1(1): 56, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37938275

RESUMEN

Lichen thalli are formed through the symbiotic association of a filamentous fungus and photosynthetic green alga and/or cyanobacterium. Recent studies have revealed lichens also host highly diverse communities of secondary fungal and bacterial symbionts, yet few studies have examined the viral component within these complex symbioses. Here, we describe viral biodiversity and functions in cyanolichens collected from across North America and Europe. As current machine-learning viral-detection tools are not trained on complex eukaryotic metagenomes, we first developed efficient methods to remove eukaryotic reads prior to viral detection and a custom pipeline to validate viral contigs predicted with three machine-learning methods. Our resulting high-quality viral data illustrate that every cyanolichen thallus contains diverse viruses that are distinct from viruses in other terrestrial ecosystems. In addition to cyanobacteria, predicted viral hosts include other lichen-associated bacterial lineages and algae, although a large fraction of viral contigs had no host prediction. Functional annotation of cyanolichen viral sequences predicts numerous viral-encoded auxiliary metabolic genes (AMGs) involved in amino acid, nucleotide, and carbohydrate metabolism, including AMGs for secondary metabolism (antibiotics and antimicrobials) and fatty acid biosynthesis. Overall, the diversity of cyanolichen AMGs suggests that viruses may alter microbial interactions within these complex symbiotic assemblages.

16.
Front Microbiol ; 12: 765268, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956127

RESUMEN

Marine microbial ecology requires the systematic comparison of biogeochemical and sequence data to analyze environmental influences on the distribution and variability of microbial communities. With ever-increasing quantities of metagenomic data, there is a growing need to make datasets Findable, Accessible, Interoperable, and Reusable (FAIR) across diverse ecosystems. FAIR data is essential to developing analytical frameworks that integrate microbiological, genomic, ecological, oceanographic, and computational methods. Although community standards defining the minimal metadata required to accompany sequence data exist, they haven't been consistently used across projects, precluding interoperability. Moreover, these data are not machine-actionable or discoverable by cyberinfrastructure systems. By making 'omic and physicochemical datasets FAIR to machine systems, we can enable sequence data discovery and reuse based on machine-readable descriptions of environments or physicochemical gradients. In this work, we developed a novel technical specification for dataset encapsulation for the FAIR reuse of marine metagenomic and physicochemical datasets within cyberinfrastructure systems. This includes using Frictionless Data Packages enriched with terminology from environmental and life-science ontologies to annotate measured variables, their units, and the measurement devices used. This approach was implemented in Planet Microbe, a cyberinfrastructure platform and marine metagenomic web-portal. Here, we discuss the data properties built into the specification to make global ocean datasets FAIR within the Planet Microbe portal. We additionally discuss the selection of, and contributions to marine-science ontologies used within the specification. Finally, we use the system to discover data by which to answer various biological questions about environments, physicochemical gradients, and microbial communities in meta-analyses. This work represents a future direction in marine metagenomic research by proposing a specification for FAIR dataset encapsulation that, if adopted within cyberinfrastructure systems, would automate the discovery, exchange, and re-use of data needed to answer broader reaching questions than originally intended.

17.
J Microbiol Methods ; 189: 106302, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34391819

RESUMEN

Probiotic strains from the Bifidobacterium or Lactobacillus genera improve health outcomes in models of metabolic and cardiovascular disease. Yet, underlying mechanisms governing these improved health outcomes are rooted in the interaction of gut microbiota, intestinal interface, and probiotic strain. Central to defining the underlying mechanisms governing these improved health outcomes is the development of adaptable and non-invasive tools to study probiotic localization and colonization within the host gut microbiome. The objective of this study was to test labeling and tracking efficacy of Bifidobacterium animalis subspecies lactis 420 (B420) using a common clinical imaging agent, indocyanine green (ICG). ICG was an effective in situ labeling agent visualized in either intact mouse or excised gastrointestinal (GI) tract at different time intervals. Quantitative PCR was used to validate ICG visualization of B420, which also demonstrated that B420 transit time matched normal murine GI motility (~8 hours). Contrary to previous thoughts, B420 did not colonize any region of the GI tract whether following a single bolus or daily administration for up to 10 days. We conclude that ICG may provide a useful tool to visualize and track probiotic species such as B420 without implementing complex molecular and genetic tools. Proof-of-concept studies indicate that B420 did not colonize and establish residency align the murine GI tract.


Asunto(s)
Bifidobacterium animalis/genética , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Verde de Indocianina/metabolismo , Imagen Óptica/métodos , Animales , Traslocación Bacteriana , Bifidobacterium animalis/clasificación , Bifidobacterium animalis/aislamiento & purificación , Bifidobacterium animalis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Probióticos , Coloración y Etiquetado
18.
mSystems ; 6(1)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33622857

RESUMEN

Microbiome samples are inherently defined by the environment in which they are found. Therefore, data that provide context and enable interpretation of measurements produced from biological samples, often referred to as metadata, are critical. Important contributions have been made in the development of community-driven metadata standards; however, these standards have not been uniformly embraced by the microbiome research community. To understand how these standards are being adopted, or the barriers to adoption, across research domains, institutions, and funding agencies, the National Microbiome Data Collaborative (NMDC) hosted a workshop in October 2019. This report provides a summary of discussions that took place throughout the workshop, as well as outcomes of the working groups initiated at the workshop.

19.
Environ Microbiol ; 12(8): 2060-9, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21966902

RESUMEN

Aphids are sap-feeding insects that host a range of bacterial endosymbionts including the obligate, nutritional mutualist Buchnera plus several bacteria that are not required for host survival. Among the latter, 'Candidatus Regiella insecticola' and 'Candidatus Hamiltonella defensa' are found in pea aphids and other hosts and have been shown to protect aphids from natural enemies. We have sequenced almost the entire genome of R. insecticola (2.07 Mbp) and compared it with the recently published genome of H. defensa (2.11 Mbp). Despite being sister species the two genomes are highly rearranged and the genomes only have ∼55% of genes in common. The functions encoded by the shared genes imply that the bacteria have similar metabolic capabilities, including only two essential amino acid biosynthetic pathways and active uptake mechanisms for the remaining eight, and similar capacities for host cell toxicity and invasion (type 3 secretion systems and RTX toxins). These observations, combined with high sequence divergence of orthologues, strongly suggest an ancient divergence after establishment of a symbiotic lifestyle. The divergence in gene sets and in genome architecture implies a history of rampant recombination and gene inactivation and the ongoing integration of mobile DNA (insertion sequence elements, prophage and plasmids).


Asunto(s)
Áfidos/microbiología , Enterobacteriaceae/genética , Evolución Molecular , Genoma Bacteriano , Simbiosis , Animales , Hibridación Genómica Comparativa , ADN Bacteriano/genética , Enterobacteriaceae/fisiología , Islas Genómicas , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN
20.
Syst Biol ; 58(5): 489-500, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20525603

RESUMEN

Several methods have recently been developed to infer multilocus phylogenies by incorporating information from topological incongruence of the individual genes. In this study, we investigate 2 such methods, Bayesian concordance analysis and Bayesian estimation of species trees. Our test data are a collection of genes from cultivated rice (genus Oryza) and the most closely related wild species, generated using a high-throughput sequencing protocol and bioinformatics pipeline. Trees inferred from independent genes display levels of topological incongruence that far exceed that seen in previous data sets analyzed with these species tree methods. We identify differences in phylogenetic results between inference methods that incorporate gene tree incongruence. Finally, we discuss the challenges of scaling these analyses for data sets with thousands of gene trees and extensive levels of missing data.


Asunto(s)
Teorema de Bayes , Clasificación/métodos , Biología Computacional/métodos , Genes/genética , Modelos Genéticos , Oryza/genética , Filogenia , Secuencia de Bases , Alineación de Secuencia , Análisis de Secuencia de ADN , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA