Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(10): 7420-7430, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28245019

RESUMEN

Cerium dioxide, CeO2-δ, remains one of the most attractive materials under consideration for solar-driven thermochemical production of chemical fuels. Understanding the rate-limiting factors in fuel production is essential for maximizing the efficacy of the thermochemical process. The rate of response is measured here via electrical conductance relaxation methods using porous ceria structures with architectural features typical of those employed in solar reactors. A transition from behavior controlled by material surface reaction kinetics to that controlled by sweep-gas supply rates is observed on increasing temperature, increasing volume specific surface area, and decreasing normalized gas flow rate. The transition behavior is relevant not only for optimal reactor operation and architectural design of the material, but also for accurate measurement of material properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA