Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Intervalo de año de publicación
1.
Ther Adv Drug Saf ; 12: 20420986211038436, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394910

RESUMEN

The collection and assessment of individual case safety reports (ICSRs) is important to detect unknown adverse drug reactions particularly in the first decade after approval of new chemical entities. However, regulations require that these activities are routinely undertaken for all medicinal products, including older medicines such as generic medicinal products with a well-established safety profile. For the latter, the risk management plans no longer contain important risks, considered important safety concerns, on the basis that routine pharmacovigilance activity would not allow their further characterisation. Society assumes that unexpected adverse reactions causally related to pharmacological activity are very unlikely to be detected for such well-established medicines, but important risks can still occur. For these products, a change in the safety profile which is brand or source specific and usually local in nature, associated with failures with the adequate control of quality of manufacturing or distribution are important safety issues. These may be the consequence of manufacturing and pharmacovigilance quality systems that are not fully integrated over the product life cycle (e.g. inadequate control of quality defects affecting one or multiple batches; inadequate impact assessment of change/variation of manufacturing, quality control testing, storage and distribution processes; inadequate control over the distribution channels including the introduction of counterfeit or falsified products into the supply chain). Drug safety hazards caused by the above-mentioned issues have been identified with different products and formulations, from small molecules to complex molecules such as biological products extracted from animal sources, biosimilars and advanced therapy medicinal products. The various phases of the drug manufacturing and distribution of pharmaceutical products require inputs from pharmacovigilance to assess any effects of quality-related issues and to identify proportionate risk minimisation measures that often have design implications for a medicine which requires a close link between proactive vigilance and good manufacturing practice. To illustrate our argument for closer organisational integration, some examples of drug safety hazards originating from quality, manufacturing and distribution issues are discussed. PLAIN LANGUAGE SUMMARY: Monitoring the manufacturing and quality of medicines: the fundamental task of pharmacovigilance Pharmacovigilance is the science relating to the collection, detection, assessment, monitoring, and prevention of adverse reactions with pharmaceutical products. The collection and assessment of adverse reactions are particularly important in the first decade after marketing authorisation of a drug as the information gathered in this period could help, for example, to identify complications from its use which were unknown before its commercialization. However, when it comes to medicines that have been on the market for a long time there is general acceptance that their safety profile is already well-established and unknown adverse reactions unlikely to occur. Nevertheless, even older medicines, such as generic drugs, can generate new risks. For these drugs a change in the safety profile could be the result of inadequate control of their quality, manufacturing and distribution systems. To overcome such an obstacle, it is necessary to fully integrate manufacturing and pharmacovigilance quality systems in the medicine life-cycle. This could help detect safety hazards and prevent the development of new complications which may arise due to the poor quality of a drug. Pharmacovigilance activities should indeed be included in all phases of the drugs' manufacturing and distribution process, regardless of their chemical complexity to detect quality-related matters in good time and reduce the risk of safety concerns to a minimum.

2.
Eur J Pharm Biopharm ; 53(2): 203-8, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11880004

RESUMEN

Lipid emulsion particles containing 10% of medium chain triglycerides were prepared using 2% w/w of a mixture 1:1 w/w of purified soya phosphatidylcholine and 2-hexanoyl phosphatidylcholine as emulsifier mixture, for use as drug carriers. The mean droplet sizes of emulsions, prepared using an Ultra Turrax or a high-pressure homogenizer, were about 288 and 158 nm, respectively, compared with 380 and 268 nm for emulsions containing lecithin, or 325 and 240 nm for those containing 6-phosphatidylcholine. The stability of the emulsions, determined by monitoring the decrease of a lipophilic marker at a specified level within the emulsion, and observing coalescence over time, was also greatly increased using the emulsifier mixture. The emulsion stability did not notably change in the presence of a model destabilizing drug, indomethacin. The use of a second hydrophilic surfactant to adjust the packing properties of the lecithin at the oil-water interface provided an increase in the stability of lipid emulsions, and this may be of importance in the formulation of drug delivery systems.


Asunto(s)
Fosfatidilcolinas/química , Portadores de Fármacos/química , Estabilidad de Medicamentos , Emulsiones , Cinética , Lisofosfatidilcolinas/química , Tecnología Farmacéutica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA