Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Food Microbiol ; 63: 72-83, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28040184

RESUMEN

This study examined the effect of osmotic dehydration of Kalamata natural black olives as pre-fermentation treatment in combination with partial substitution of NaCl by monosodium glutamate (MSG) on the fermentation profile of olives. Osmotic dehydration was undertaken by immersing the olives in 70% (w/w) glucose syrup overnight at room temperature. Further on, three different mixtures of NaCl and MSG with/without prior osmotic dehydration of olives were investigated, namely (i) 6.65% NaCl - 0.35% MSG (5% substitution), (ii) 6.30% NaCl - 0.70% MSG (10% substitution), (iii) 5.95% NaCl - 1.05% MSG (15% substitution), and (iv) 7% NaCl without osmotic dehydration (control treatment). Changes in the microbial association (lactic acid bacteria [LAB], yeasts, Enterobacteriaceae), pH, titratable acidity, organic acids, sugars, and volatile compounds in the brine were analyzed for a period of 4 months. The final product was subjected to sensory analysis and the content of MSG in olives was determined. Results demonstrated that osmotic dehydration of olives prior to brining led to vigorous lactic acid processes as indicated by the obtained values of pH (3.7-4.1) and acidity (0.7-0.8%) regardless of the amount of MSG used. However, in non-osmotically dehydrated olives, the highest substitution level of MSG resulted in a final pH (4.5) that was beyond specification for this type of olives. MSG was degraded in the brines being almost completely converted to γ-aminobutyric acid (GABA) at the end of fermentation. Finally, the sensory assessment of fermented olives with/without osmotic dehydration and at all levels of MSG did not show any deviation compared to the control treatment.


Asunto(s)
Desecación , Fermentación , Olea , Cloruro de Sodio/farmacología , Glutamato de Sodio/farmacología , Recuento de Colonia Microbiana , Enterobacteriaceae/fisiología , Microbiología de Alimentos/métodos , Conservación de Alimentos/métodos , Glucosa/metabolismo , Glucosa/farmacología , Concentración de Iones de Hidrógeno , Lactobacillaceae/fisiología , Olea/química , Olea/efectos de los fármacos , Olea/microbiología , Ósmosis , Sales (Química) , Cloruro de Sodio/metabolismo , Glutamato de Sodio/metabolismo , Gusto , Levaduras/fisiología
2.
Foods ; 9(5)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32423080

RESUMEN

The aim of the present study was to investigate the evolution of the volatile compounds of aerobically stored sterile pork meat as a consequence of the metabolic activities of inoculated specific spoilage microorganisms. Thus, Pseudomonas fragi, Pseudomonas putida, Lactobacillus sakei and Leuconostoc mesenteroides were inoculated in monocultures, dual cultures and a cocktail culture of all strains on sterile pork meat stored aerobically at 4 and 10 °C. Microbiological and sensory analyses, as well as pH measurements, were performed, along with headspace solid-phase microextraction gas chromatography/mass spectroscopy (headspace SPME-GC/MS) analysis. Data analytics were used to correlate the volatile compounds with the spoilage potential of each stain using multivariate data analysis. The results for the sensory discrimination showed that the volatiles that dominated in spoiled samples consisted mostly of alcohols, ketones and two esters (butyl acetate and ethyl acetate), while at fresh samples, dimethyl sulfide, furans, acetoin and ethyl lactate were detected. On the other hand, 2-butanone, diacetyl and acetaldehyde were among the volatile compounds that were mainly correlated with the inoculated meat during storage. In addition, P. fragi was positively correlated with a higher number of volatiles compared to the other strains, strengthening the hypothesis that volatile compound production is strain-dependent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA