Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190489, 2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33161863

RESUMEN

Existing observations of Uranus and Neptune's fundamental physical properties can be fitted with a wide range of interior models. A key parameter in these models is the bulk rock:ice ratio and models broadly fall into ice-dominated (ice giant) and rock-dominated (rock giant) categories. Here we consider how observations of Neptune's atmospheric temperature and composition (H2, He, D/H, CO, CH4, H2O and CS) can provide further constraints. The tropospheric CO profile in particular is highly diagnostic of interior ice content, but is also controversial, with deep values ranging from zero to 0.5 parts per million. Most existing CO profiles imply extreme O/H enrichments of >250 times solar composition, thus favouring an ice giant. However, such high O/H enrichment is not consistent with D/H observations for a fully mixed and equilibrated Neptune. CO and D/H measurements can be reconciled if there is incomplete interior mixing (ice giant) or if tropospheric CO has a solely external source and only exists in the upper troposphere (rock giant). An interior with more rock than ice is also more compatible with likely outer solar system ice sources. We primarily consider Neptune, but similar arguments apply to Uranus, which has comparable C/H and D/H enrichment, but no observed tropospheric CO. While both ice- and rock-dominated models are viable, we suggest a rock giant provides a more consistent match to available atmospheric observations. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

2.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20200107, 2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33161868

RESUMEN

We aim at investigating whether the chemical composition of the outer region of the protosolar nebula can be consistent with current estimates of the elemental abundances in the ice giants. To do so, we use a self-consistent evolutionary disc and transport model to investigate the time and radial distributions of H2O, CO, CO2, CH3OH, CH4, N2 and H2S, i.e. the main O-, C-, N and S-bearing volatiles in the outer disc. We show that it is impossible to accrete a mixture composed of gas and solids from the disc with a C/H ratio presenting enrichments comparable to the measurements (approx. 70 times protosolar). We also find that the C/N and C/S ratios measured in Uranus and Neptune are compatible with those acquired by building blocks agglomerated from solids condensed in the 10-20 arb. units region of the protosolar nebula. By contrast, the presence of protosolar C/N and C/S ratios in Uranus and Neptune would imply that their building blocks agglomerated from particles condensed at larger heliocentric distances. Our study outlines the importance of measuring the elemental abundances in the ice giant atmospheres, as they can be used to trace the planetary formation location, the origin of their building blocks and/or the chemical and physical conditions of the protosolar nebula. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

3.
Geophys Res Lett ; 46(6): 3079-3089, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33100421

RESUMEN

Titan's stratosphere exhibits significant seasonal changes, including break-up and formation of polar vortices. Here we present the first analysis of mid-infrared mapping observations from Cassini's Composite InfraRed Spectrometer (CIRS) to cover the entire mission (Ls=293-93°, 2004-2017) - mid-northern winter to northern summer solstice. The north-polar winter vortex persisted well after equinox, starting break-up around Ls∼60°, and fully dissipating by Ls∼90°. Absence of enriched polar air spreading to lower latitudes suggests large-scale circulation changes and photochemistry control chemical evolution during vortex break-up. South-polar vortex formation commenced soon after equinox and by Ls∼60° was more enriched in trace gases than the northern mid-winter vortex and had temperatures ∼20 K colder. This suggests early-winter and mid-winter vortices are dominated by different processes - radiative cooling and subsidence-induced adiabatic heating respectively. By the end of the mission (Ls=93°) south-polar conditions were approaching those observed in the north at Ls=293°, implying seasonal symmetry in Titan's vortices.

4.
Nature ; 450(7170): 637-40, 2007 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-18046395

RESUMEN

Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright 'dipole' feature surrounded by a cold 'collar' at its north pole. The polar dipole is a 'double-eye' feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus' south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50 km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition.

5.
J Geophys Res Planets ; 127(6): e2022JE007189, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35865671

RESUMEN

We present a reanalysis (using the Minnaert limb-darkening approximation) of visible/near-infrared (0.3-2.5 µm) observations of Uranus and Neptune made by several instruments. We find a common model of the vertical aerosol distribution i.e., consistent with the observed reflectivity spectra of both planets, consisting of: (a) a deep aerosol layer with a base pressure >5-7 bar, assumed to be composed of a mixture of H2S ice and photochemical haze; (b) a layer of photochemical haze/ice, coincident with a layer of high static stability at the methane condensation level at 1-2 bar; and (c) an extended layer of photochemical haze, likely mostly of the same composition as the 1-2-bar layer, extending from this level up through to the stratosphere, where the photochemical haze particles are thought to be produced. For Neptune, we find that we also need to add a thin layer of micron-sized methane ice particles at ∼0.2 bar to explain the enhanced reflection at longer methane-absorbing wavelengths. We suggest that methane condensing onto the haze particles at the base of the 1-2-bar aerosol layer forms ice/haze particles that grow very quickly to large size and immediately "snow out" (as predicted by Carlson et al. (1988), https://doi.org/10.1175/1520-0469(1988)045<2066:CMOTGP>2.0.CO;2), re-evaporating at deeper levels to release their core haze particles to act as condensation nuclei for H2S ice formation. In addition, we find that the spectral characteristics of "dark spots", such as the Voyager-2/ISS Great Dark Spot and the HST/WFC3 NDS-2018, are well modelled by a darkening or possibly clearing of the deep aerosol layer only.

6.
Nat Commun ; 9(1): 3564, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30177694

RESUMEN

Saturn's polar stratosphere exhibits the seasonal growth and dissipation of broad, warm vortices poleward of ~75° latitude, which are strongest in the summer and absent in winter. The longevity of the exploration of the Saturn system by Cassini allows the use of infrared spectroscopy to trace the formation of the North Polar Stratospheric Vortex (NPSV), a region of enhanced temperatures and elevated hydrocarbon abundances at millibar pressures. We constrain the timescales of stratospheric vortex formation and dissipation in both hemispheres. Although the NPSV formed during late northern spring, by the end of Cassini's reconnaissance (shortly after northern summer solstice), it still did not display the contrasts in temperature and composition that were evident at the south pole during southern summer. The newly formed NPSV was bounded by a strengthening stratospheric thermal gradient near 78°N. The emergent boundary was hexagonal, suggesting that the Rossby wave responsible for Saturn's long-lived polar hexagon-which was previously expected to be trapped in the troposphere-can influence the stratospheric temperatures some 300 km above Saturn's clouds.

7.
Faraday Discuss ; 147: 51-64; discussion 83-102, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21302542

RESUMEN

Observations of Titan's far infra-red spectra by the Cassini orbiter's Composite InfraRed Spectrometer have been used to determine the latitude distribution of HCN at 1 mbar by fitting the HCN and CO rotational lines in the 18-60 cm(-1) (160-550 microm) spectral range. Results confirm the north polar HCN enrichment previously observed using mid-IR data and support the conclusion that Titan's nitrile species are significantly more enriched than hydrocarbons species with similar predicted photochemical lifetimes. This suggests Titan's photochemical cycle includes an additional sink for nitrogen bearing species. The abundance of CO was also determined, and had a mean value of 55 +/- 6 ppm at 20 mbar. However, it was not possible to reliably determine the CO latitude variation due to unconstrained temperatures in the north polar lower stratosphere.

8.
Science ; 319(5859): 79-81, 2008 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-18174438

RESUMEN

Saturn's poles exhibit an unexpected symmetry in hot, cyclonic polar vortices, despite huge seasonal differences in solar flux. The cores of both vortices are depleted in phosphine gas, probably resulting from subsidence of air into the troposphere. The warm cores are present throughout the upper troposphere and stratosphere at both poles. The thermal structure associated with the marked hexagonal polar jet at 77 degrees N has been observed for the first time. Both the warm cyclonic belt at 79 degrees N and the cold anticyclonic zone at 75 degrees N exhibit the hexagonal structure.

9.
Science ; 308(5724): 975-8, 2005 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-15894528

RESUMEN

Temperatures obtained from early Cassini infrared observations of Titan show a stratopause at an altitude of 310 kilometers (and 186 kelvin at 15 degrees S). Stratospheric temperatures are coldest in the winter northern hemisphere, with zonal winds reaching 160 meters per second. The concentrations of several stratospheric organic compounds are enhanced at mid- and high northern latitudes, and the strong zonal winds may inhibit mixing between these latitudes and the rest of Titan. Above the south pole, temperatures in the stratosphere are 4 to 5 kelvin cooler than at the equator. The stratospheric mole fractions of methane and carbon monoxide are (1.6 +/- 0.5) x 10(-2) and (4.5 +/- 1.5) x 10(-5), respectively.


Asunto(s)
Hidrocarburos , Metano , Nitrilos , Saturno , Atmósfera , Monóxido de Carbono , Medio Ambiente Extraterrestre , Nave Espacial , Temperatura , Viento
10.
Science ; 307(5713): 1247-51, 2005 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-15618486

RESUMEN

Stratospheric temperatures on Saturn imply a strong decay of the equatorial winds with altitude. If the decrease in winds reported from recent Hubble Space Telescope images is not a temporal change, then the features tracked must have been at least 130 kilometers higher than in earlier studies. Saturn's south polar stratosphere is warmer than predicted from simple radiative models. The C/H ratio on Saturn is seven times solar, twice Jupiter's. Saturn's ring temperatures have radial variations down to the smallest scale resolved (100 kilometers). Diurnal surface temperature variations on Phoebe suggest a more porous regolith than on the jovian satellites.


Asunto(s)
Saturno , Atmósfera , Carbono , Medio Ambiente Extraterrestre , Hidrógeno , Metano , Nave Espacial , Análisis Espectral , Temperatura , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA