Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 88(5): 2825-31, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26849182

RESUMEN

(13)C-Metabolic Flux Analysis ((13)C-MFA) is rapidly being recognized as the authoritative method for determining fluxes through metabolic networks. Site-specific (13)C enrichment information obtained using NMR spectroscopy is a valuable input for (13)C-MFA experiments. Chemical shift overlaps in the 1D or 2D NMR experiments typically used for (13)C-MFA frequently hinder assignment and quantitation of site-specific (13)C enrichment. Here we propose the use of a 3D TOCSY-HSQC experiment for (13)C-MFA. We employ Non-Uniform Sampling (NUS) to reduce the acquisition time of the experiment to a few hours, making it practical for use in (13)C-MFA experiments. Our data show that the NUS experiment is linear and quantitative. Identification of metabolites in complex mixtures, such as a biomass hydrolysate, is simplified by virtue of the (13)C chemical shift obtained in the experiment. In addition, the experiment reports (13)C-labeling information that reveals the position specific labeling of subsets of isotopomers. The information provided by this technique will enable more accurate estimation of metabolic fluxes in large metabolic networks.

2.
Nucleic Acids Res ; 29(12): 2635-43, 2001 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-11410673

RESUMEN

Recent NMR-based, chemical shift mapping experiments with the minimal DNA-binding domain of XPA (XPA-MBD: M98-F219) suggest that a basic cleft located in the loop-rich subdomain plays a role in DNA-binding. Here, XPA-DNA interactions are further characterized by NMR spectroscopy from the vantage point of the DNA using a single-stranded DNA nonamer, dCCAATAACC (d9). Up to 2.5 molar equivalents of XPA-MBD was titrated into a solution of d9. A subset of (31)P resonances of d9 were observed to broaden and/or shift providing direct evidence that XPA-MBD binds d9 by a mechanism that perturbs the phosphodiester backbone of d9. The interior five residues of d9 broadened and/or shifted before (31)P resonances of phosphate groups at the termini, suggesting that when d9 is bound to XPA-MBD the internal residues assume a correlation time that is characteristic of the molecular weight of the complex while the residues at the termini undergo a fraying motion away from the surface of the protein on a timescale such that the line widths are more characteristic of the molecular weight of ssDNA. A molecular model of the XPA-MBD complex with d9 was calculated based on the (15)N (XPA-MBD) and (31)P (d9) chemical shift mapping studies and on the assumption that electrostatic interactions drive the complex formation. The model shows that a nine residue DNA oligomer fully covers the DNA-binding surface of XPA and that there may be an energetic advantage to binding DNA in the 3'-->5' direction rather than in the 5'-->3' direction (relative to XPA-MBD alpha-helix-3).


Asunto(s)
Reparación del ADN/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Xerodermia Pigmentosa/genética , Secuencia de Bases , Sitios de Unión , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Humanos , Peso Molecular , Conformación de Ácido Nucleico , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Protones , Electricidad Estática , Volumetría , Proteína de la Xerodermia Pigmentosa del Grupo A
3.
Nucleic Acids Res ; 29(15): 3270-6, 2001 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-11470885

RESUMEN

Replication protein A (RPA) is a heterotrimeric, multi-functional protein that binds single-stranded DNA (ssDNA) and is essential for eukaryotic DNA metabolism. Using heteronuclear NMR methods we have investigated the domain interactions and ssDNA binding of a fragment from the 70 kDa subunit of human RPA (hRPA70). This fragment contains an N-terminal domain (NTD), which is important for hRPA70-protein interactions, connected to a ssDNA-binding domain (SSB1) by a flexible linker (hRPA70(1-326)). Correlation analysis of the amide (1)H and (15)N chemical shifts was used to compare the structure of the NTD and SSB1 in hRPA70(1-326) with two smaller fragments that corresponded to the individual domains. High correlation coefficients verified that the NTD and SSB1 maintained their structures in hRPA70(1-326), indicating weak interdomain coupling. Weak interdomain coupling was also suggested by a comparison of the transverse relaxation rates for hRPA70(1-326) and one of the smaller hRPA70 fragments containing the NTD and the flexible linker (hRPA70(1-168)). We also examined the structure of hRPA70(1-326) after addition of three different ssDNA substrates. Each of these substrates induced specific amide (1)H and/or (15)N chemical shift changes in both the NTD and SSB1. The NTD and SSB1 have similar topologies, leading to the possibility that ssDNA binding induced the chemical shift changes observed for the NTD. To test this hypothesis we monitored the amide (1)H and (15)N chemical shift changes of hRPA70(1-168) after addition of ssDNA. The same amide (1)H and (15)N chemical shift changes were observed for the NTD in hRPA70(1-168) and hRPA70(1-326). The NTD residues with the largest amide (1)H and/or (15)N chemical shift changes were localized to a basic cleft that is important for hRPA70-protein interactions. Based on this relationship, and other available data, we propose a model where binding between the NTD and ssDNA interferes with hRPA70-protein interactions.


Asunto(s)
ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Amidas/metabolismo , Secuencias de Aminoácidos , Secuencia Conservada , ADN de Cadena Simple/genética , Humanos , Cinética , Modelos Moleculares , Peso Molecular , Resonancia Magnética Nuclear Biomolecular , Docilidad , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína , Proteína de Replicación A , Rotación
4.
J Magn Reson ; 146(2): 260-76, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11001842

RESUMEN

Stereo-selectivedeuteration has been explored as an approach for improving the accuracy of NMR-derived, three-bond vicinal proton-proton coupling constants in the 12-base-pair DNA Dickerson sequence [d(CGCGAATTCGCG)(2)]. The coupling constants are useful for DNA structure determination in restrained molecular dynamics calculations. Specifically, the A5 and A6 residues were prepared with the H2" proton stereo-selectively replaced with a deuteron. Deuteration of the H2" leads to a 42-fold reduction in the transverse cross-relaxation rate of the H2' spin, effectively negating the contribution of transverse cross relaxation to the cross peak frequencies and phases. Calculated linewidth and polarization transfer functions indicated that the reduced dipolar interaction is also expected to result in a significant increase in intensity for all cross peaks involving the H1', H2', or H3' spin. The spectral complexity is also reduced by selective deuteration. Time-shared homonuclear decoupling of passive spins during acquisition was implemented, reducing the spin system, in some cases, to an effectively isolated two-spin system. This enables the use of a 90 degrees mixing pulse instead of the 35 degrees pulse commonly used in standard P.E.COSY experiments, leading to an additional 75% increase in signal intensity. Selective excitation pulses were used to reduce the number of increments required in the indirect dimension by as much as a factor of 4. The cumulative improvement in sensitivity is striking, approaching three orders of magnitude per unit time. Separate experiments, referred to as Stripe-COSY and Superstripe-COSY, were optimized for each coupling constant measured. Finally, J-doubling was used to obtain the most accurate peak separations. This comprehensive approach shows promise as an effective method for extracting highly accurate homonuclear vicinal coupling constants in DNA.


Asunto(s)
ADN/química , Tetrosas/química , Algoritmos , Deuterio , Espectroscopía de Resonancia Magnética , Conformación de Ácido Nucleico , Oligonucleótidos/química , Protones , Purinas/química
5.
Mutat Res ; 486(1): 1-10, 2001 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-11356331

RESUMEN

XPA is a central protein component of nucleotide excision repair (NER), a ubiquitous, multi-component cellular pathway responsible for the removal and repair of many structurally distinct DNA lesions from the eukaryotic genome. The solution structure of the minimal DNA-binding domain of XPA (XPA-MBD: M98-F219) has recently been determined and chemical shift mapping experiments with 15N-labeled XPA-MBD show that XPA binds DNA along a basic surface located in the C-terminal loop-rich subdomain. Here, XPA-DNA interactions are further characterized using an XPA fragment containing the minimal DNA-binding domain plus the ERCC1-binding region (XPA-EM: M59-F219). The 15N/1H HSQC spectrum of XPA-EM closely maps onto the 15N/1H HSQC spectrum of XPA-MBD, suggesting the DNA-binding domain is intact in the larger XPA fragment. Such a conclusion is corroborated by chemical shift mapping experiments of XPA-EM with a single strand DNA oligomer, dCCAATAACC (d9), that show the same set of 15N/1H HSQC cross peaks are effected by the addition of DNA. However, relative to DNA-free XPA-MBD, the 15N/1H HSQC cross peaks of many of the basic residues in the loop-rich subdomain of DNA-free XPA-EM are less intense, or gone altogether, suggesting the acidic ERRC1-binding region of XPA-EM may associate transiently with the basic DNA-binding surface. While the DNA-binding domain in XPA-EM is structured and functional, 15N-edited NOESY spectra of XPA-EM indicate that the acidic ERRC1-binding region is unstructured. If the structural features observed for XPA-EM persist in XPA, transient intramolecular association of the ERCC1-binding domain with the DNA-binding region may play a role in the sequential assembly of the NER components.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Espectroscopía de Resonancia Magnética , Sitios de Unión , Proteínas de Unión al ADN/aislamiento & purificación , Durapatita/química , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Factores de Tiempo , Proteína de la Xerodermia Pigmentosa del Grupo A
6.
J Biomol NMR ; 14(4): 321-31, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10526407

RESUMEN

Human Replication Protein A (hsRPA) is required for multiple cellular processes in DNA metabolism including DNA repair, replication and recombination. It binds single-stranded DNA with high affinity and interacts specifically with multiple proteins. hsRPA forms a heterotrimeric complex composed of 70-, 32- and 14-kDa subunits (henceforth RPA70, RPA32, and RPA14). The N-terminal 168 residues of RPA70 form a structurally distinct domain that stimulates DNA polymerase alpha activity, interacts with several transcriptional activators including tumor suppressor p53, and during the cell cycle it signals escape from the DNA damage induced G2/M checkpoint. We have solved the global fold of the fragment corresponding to this domain (RPA70 delta 169) and we find residues 8-108 of the N-terminal domain are structured. The remaining C-terminal residues are unstructured and may form a flexible linker to the DNA-binding domain of RPA70. The globular region forms a five-stranded anti-parallel beta-barrel. The ends of the barrel are capped by short helices. Two loops on one side of the barrel form a large basic cleft which is a likely site for binding the acidic motifs of transcriptional activators. Many lethal or conditional lethal yeast point mutants map to this cleft, whereas no mutations with severe phenotype have been found in the linker region.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/química , Pliegue de Proteína , Secuencia de Aminoácidos , Proteínas de Unión al ADN/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Conformación Proteica , Proteína de Replicación A
7.
Biochemistry ; 38(46): 15116-28, 1999 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-10563794

RESUMEN

Human XPA is an essential component in the multienzyme nucleotide excision repair (NER) pathway. The solution structure of the minimal DNA binding domain of XPA (XPA-MBD: M98-F219) was recently determined [Buchko et al. (1998) Nucleic Acids Res. 26, 2779-2788, Ikegami et al. (1998) Nat. Struct. Biol. 5, 701-706] and shown to consist of a compact zinc-binding core and a loop-rich C-terminal subdomain connected by a linker sequence. Here, the solution structure of XPA-MBD was further refined using an entirely new class of restraints based on pseudocontact shifts measured in cobalt-substituted XPA-MBD. Using this structure, the surface of XPA-MBD which interacts with DNA and a fragment of the largest subunit of replication protein A (RPA70 Delta C327: M1-Y326) was determined using chemical shift mapping. DNA binding in XPA-MBD was highly localized in the loop-rich subdomain for DNA with or without a lesion [dihydrothymidine (dhT) or 6-4-thymidine-cytidine (64TC)], or with DNA in single- or double-stranded form, indicating that the character of the lesion itself is not the driving force for XPA binding DNA. RPA70 Delta C327 was found to contact regions in both the zinc-binding and loop-rich subdomains. Some overlap of the DNA and RPA70 Delta C327 binding regions was observed in the loop-rich subdomain, indicating a possible cooperative DNA-binding mode between XPA and RPA70 Delta C327. To complement the chemical shift mapping data, the backbone dynamics of free XPA-MBD and XPA-MBD bound to DNA oligomers containing dhT or 64TC lesions were investigated using 15N NMR relaxation data. The dynamic analyses for the XPA-MBD complexes with DNA revealed localized increases and decreases in S2 and an increase in the global correlation time. Regions of XPA-MBD with the largest increases in S2 overlapped regions having the largest chemical shifts changes upon binding DNA, indicating that the loop-rich subdomain becomes more rigid upon binding DNA. Interestingly, S2 decreased for some residues in the zinc-binding core upon DNA association, indicating a possible concerted structural rearrangement on binding DNA.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/química , ADN/química , Proteínas de Unión al ARN/química , Sitios de Unión , ADN/metabolismo , Replicación del ADN , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Isótopos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Proteínas de Unión al ARN/metabolismo , Proteína de Replicación A , Soluciones , Termodinámica , Proteína de la Xerodermia Pigmentosa del Grupo A
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA