Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 268: 110319, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32510455

RESUMEN

Literature related to the carbon cycle and climate contains contradictory results with regard to whether agricultural practices increase or mitigate emission of greenhouse gases (GHGs). One opinion is that anthropogenic activities have distinct carbon footprints - measured as total emissions of GHGs resulting from an activity, in this case, "agricultural operations". In contrast, it is argued that agriculture potentially serves to mitigate GHGs emissions when the best management practices are implemented. We review the literature on agricultural carbon footprints in the context of agricultural practices including soil, water and nutrient management. It has been reported that the management practices that enhance soil organic carbon (SOC) in arid and semi-arid areas include conversion of conventional tillage practices to conservation tillage approaches. We found that agricultural management in arid and semi-arid regions, which have specific characteristics related to high temperatures and low rainfall conditions, requires different practices for maintenance and restoration of SOC and for control of soil erosion compared to those used in Mediterranean, tropical regions. We recommend that in order to meet the global climate targets, quantification of net global warming potential of agricultural practices requires precise estimates of local, regional and global carbon budgets. We have conducted and present a case study for observing the development of deep soil carbon profile resulting from a 10-year wheat-cotton and wheat-maize rotation on semi-arid lands. Results showed that no tillage with mulch application had 14% (37.2 vs 43.3 Mg ha-1) higher SOC stocks in comparison to conventional tillage with mulch application. By implementing no tillage in conjunction with mulch application, lower carbon losses from soil can mitigate the risks associated with global warming. Therefore, it is necessary to reconsider agricultural practices and soil erosion after a land-use change when calculating global carbon footprints.


Asunto(s)
Carbono , Suelo , Agricultura , Ciclo del Carbono , Zea mays
2.
Ecotoxicol Environ Saf ; 122: 528-36, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26426697

RESUMEN

Increasing concentration of Cd in soil is of great concern due to risk of its entry into food chain. Zinc (Zn) being antagonist to Cd is an important micronutrient to ameliorate its toxic effects on plants and to limit its entry into food chain. A pot experiment was conducted using Cd contaminated soil (30 mg Cd kg(-1) soil as 3CdSO4 · 8H2O) to investigate the effect of soil and foliar applied Zn on physiological response and Cd concentration in wheat. In soil, Zn was applied at 15 and 30 mg Zn kg(-1) soil as zinc sulfate (ZnSO4 · 7H2O). For foliar applications, 3 and 6 g L(-1) ZnSO4 solution was sprayed on completing eight weeks of growth. Results indicated that Zn application could effectively improve physiological performance and mineral content of wheat grown on Cd contaminated soils. Among different Zn fertilization treatments, foliar application of 3 g L(-1) ZnSO4 solution recorded the maximum soluble proteins and the minimum grain-Cd concentration. Soil application of ZnSO4 or foliar application at 6 g L(-1) did not affect Cd concentration in grains. Zinc application through both the methods significantly increased phosphorus (P), potassium (K) and Zn concentrations in shoots. Concentration of P and K in grains showed positive relationship with that of Zn. In crux, present study suggests that foliar application of Zn at booting stage in a suitable concentration (3 g L(-1) ZnSO4 solution) can effectively ameliorate the adverse effects of Cd and decrease grain-Cd of wheat grown in Cd contaminated soil.


Asunto(s)
Cadmio/toxicidad , Grano Comestible/crecimiento & desarrollo , Minerales/metabolismo , Contaminantes del Suelo/toxicidad , Triticum/crecimiento & desarrollo , Zinc/farmacología , Biomasa , Cadmio/análisis , Cadmio/metabolismo , Clorofila/metabolismo , Grano Comestible/química , Grano Comestible/metabolismo , Modelos Teóricos , Proteínas de Plantas/metabolismo , Contaminantes del Suelo/metabolismo , Triticum/química , Triticum/metabolismo , Zinc/metabolismo , Sulfato de Zinc/metabolismo , Sulfato de Zinc/farmacología
3.
Front Plant Sci ; 13: 973782, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072329

RESUMEN

Salinity has become a major environmental concern of agricultural lands, impairing crop production. The current study aimed to examine the role of zinc oxide nanoparticles (ZnO NPs) in reducing the oxidative stress induced by salinity and the overall improvement in phytochemical properties in barley. A total of nine different barley genotypes were first subjected to salt (NaCl) stress in hydroponic conditions to determine the tolerance among the genotypes. The genotype Annora was found as most sensitive, and the most tolerant genotype was Awaran 02 under salinity stress. In another study, the most sensitive (Annora) and tolerant (Awaran 02) barley genotypes were grown in pots under salinity stress (100 mM). At the same time, half of the pots were provided with the soil application of ZnO NPs (100 mg kg-1), and the other half pots were foliar sprayed with ZnO NPs (100 mg L-1). Salinity stress reduced barley growth in both genotypes compared to control plants. However, greater reduction in barley growth was found in Annora (sensitive genotype) than in Awaran 02 (tolerant genotype). The exogenous application of ZnO NPs ameliorated salt stress and improved barley biomass, photosynthesis, and antioxidant enzyme activities by reducing oxidative damage caused by salt stress. However, this positive effect by ZnO NPs was observed more in Awaran 02 than in Annora genotype. Furthermore, the foliar application of ZnO NPs was more effective than the soil application of ZnO NPs. Findings of the present study revealed that exogenous application of ZnO NPs could be a promising approach to alleviate salt stress in barley genotypes with different levels of salinity tolerance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA