Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Am J Pathol ; 194(5): 693-707, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38309428

RESUMEN

Glucose lowering independently reduces liver fibrosis in human nonalcoholic fatty liver disease. This study investigated the impact of diabetes on steatohepatitis and established a novel mouse model for diabetic steatohepatitis. Male C57BL/6J mice were fed a 60% high-fat diet (HFD) and injected with carbon tetrachloride (CCl4) and streptozotocin (STZ) to induce diabetes. The HFD+CCl4+STZ group showed more severe liver steatosis, hepatocyte ballooning, and regenerative nodules compared with other groups. Diabetes up-regulated inflammatory cytokine-associated genes and increased the M1/M2 macrophage ratios in the liver. Single-cell RNA sequencing analysis of nonparenchymal cells in the liver showed that diabetes reduced Kupffer cells and increased bone marrow-derived recruited inflammatory macrophages, such as Ly6Chi-RM. Diabetes globally reduced liver sinusoidal endothelial cells (LSECs). Furthermore, genes related to the receptor for advanced glycation end products (RAGE)/Toll-like receptor 4 (TLR4) were up-regulated in Ly6Chi-RM and LSECs in mice with diabetes, suggesting a possible role of RAGE/TLR4 signaling in the interaction between inflammatory macrophages and LSECs. This study established a novel diabetic steatohepatitis model using a combination of HFD, CCl4, and STZ. Diabetes exacerbated steatosis, hepatocyte ballooning, fibrosis, regenerative nodule formation, and the macrophage M1/M2 ratios triggered by HFD and CCl4. Single-cell RNA sequencing analysis indicated that diabetes activated inflammatory macrophages and impairs LSECs through the RAGE/TLR4 signaling pathway. These findings open avenues for discovering novel therapeutic targets for diabetic steatohepatitis.


Asunto(s)
Diabetes Mellitus , Enfermedad del Hígado Graso no Alcohólico , Ratones , Masculino , Humanos , Animales , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Células Endoteliales/metabolismo , Transcriptoma , Ratones Endogámicos C57BL , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Cirrosis Hepática/patología , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Dieta Alta en Grasa/efectos adversos
2.
Am J Physiol Endocrinol Metab ; 324(6): E542-E552, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36947851

RESUMEN

The quality of skeletal muscle is maintained by a balance between protein biosynthesis and degradation. Disruption in this balance results in sarcopenia. However, its underlying mechanisms remain underinvestigated. Selenoprotein P (SeP; encoded by Selenop in mice) is a hepatokine that is upregulated in type 2 diabetes and aging and causes signal resistances via reductive stress. We created immobilized muscle atrophy model in Selenop knockout (KO) mice. Immobilization (IMM) significantly reduced cross-sectional areas and the size of skeletal muscle fibers, which were ameliorated in KO mice. IMM upregulated the genes encoding E3 ubiquitin ligases and their upstream FoxO1, FoxO3, and KLF15 transcription factors in the skeletal muscle, which were suppressed in KO mice. These findings suggest a possible involvement of SeP-mediated reductive stress in physical inactivity-mediated sarcopenia, which may be a therapeutic target against sarcopenia.NEW & NOTEWORTHY Selenoprotein P (SeP) is a hepatokine that is upregulated in type 2 diabetes and aging and causes signal resistances via reductive stress. Immobilization (IMM) significantly reduced skeletal muscle mass in mice, which was prevented in SeP knockout (KO) mice. IMM-induced Foxos/KLF15-atrogene upregulation was suppressed in the skeletal muscle of KO mice. These findings suggest that SeP-mediated reductive stress is involved in and may be a therapeutic target for physical inactivity-mediated muscle atrophy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Sarcopenia , Ratones , Animales , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Selenoproteína P/genética , Selenoproteína P/metabolismo , Sarcopenia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/prevención & control , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Motivos Tripartitos
3.
J Pharmacol Exp Ther ; 385(1): 5-16, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36328485

RESUMEN

Ubiquitin-proteasome dysfunction contributes to obesity-related metabolic disorders, such as diabetes and fatty liver disease. However, the regulation of ubiquitin-proteasome activity by insulin remains to be elucidated. Here, we show that prolonged insulin stimulation activates proteasome function even though it reduces the ubiquitinated proteins in H4IIEC3 hepatocytes. Looking for a pathway by which insulin inhibits ubiquitination, we found that hepatic expression of ubiquitin-specific protease 14 (USP14) was upregulated in the liver of patients with insulin resistance. Indeed, the USP14-specific inhibitor IU1 canceled the insulin-mediated reduction of ubiquitinated proteins. Furthermore, insulin-induced endoplasmic reticulum (ER) stress, which was canceled by IU1, suggesting that USP14 activity is involved in insulin-induced ER stress. Co-stimulation with insulin and IU1 for 2 hours upregulated the nuclear translocation of the lipogenic transcription factor, sterol regulatory element binding protein-1c (SREBP-1c), upregulated the expression of the lipogenic gene, fatty acid synthase (Fasn), and repressed the gluconeogenic genes. In conclusion, insulin activates proteasome function even though it inhibits protein ubiquitination by activating USP14 in hepatocytes. USP14 activation by insulin inhibits mature SREBP-1c while upregulating ER stress and the expression of genes involved in gluconeogenesis. Further understanding mechanisms underlying the USP14 activation and its pleiotropic effects may lead to therapeutic development for obesity-associated metabolic disorders, such as diabetes and fatty liver disease. SIGNIFICANCE STATEMENT: This study shows that insulin stimulation inhibits ubiquitination by activating USP14, independent of its effect on proteasome activity in hepatocytes. USP14 also downregulates the nuclear translocation of the lipogenic transcription factor SREBP-1c and upregulates the expression of genes involved in gluconeogenesis. Since USP14 is upregulated in the liver of insulin-resistant patients, understanding mechanisms underlying the USP14 activation and its pleiotropic effects will help develop treatments for metabolic disorders such as diabetes and fatty liver.


Asunto(s)
Hepatocitos , Enfermedad del Hígado Graso no Alcohólico , Complejo de la Endopetidasa Proteasomal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Humanos , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Insulina/farmacología , Insulina/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/genética , Obesidad/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/farmacología , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Proteínas Ubiquitinadas/farmacología , Ubiquitinación , Ubiquitinas/genética , Ubiquitinas/metabolismo , Ubiquitinas/farmacología
4.
Artículo en Inglés | MEDLINE | ID: mdl-35499234

RESUMEN

Selenoprotein P (SeP; encoded by SELENOP in humans, Selenop in rodents) is a hepatokine that is upregulated in the liver of humans with type 2 diabetes. Excess SeP contributes to the onset of insulin resistance and various type 2 diabetes-related complications. We have previously reported that the long-chain saturated fatty acid, palmitic acid, upregulates Selenop expression, whereas the polyunsaturated fatty acids (PUFAs) downregulate it in hepatocytes. However, the effect of medium-chain fatty acids (MCFAs) on Selenop is unknown. Here we report novel mechanisms that underlie the lauric acid-mediated Selenop gene regulation in hepatocytes. Lauric acid upregulated Selenop expression in Hepa1-6 hepatocytes and mice liver. A luciferase promoter assay and computational analysis of transcription factor-binding sites identified the hepatic nuclear factor 4α (HNF4α) binding site in the SELENOP promoter. A chromatin immunoprecipitation (ChIP) assay showed that lauric acid increased the binding of HNF4α to the SELENOP promoter. The knockdown of Hnf4α using siRNA canceled the upregulation of lauric acid-induced Selenop. Thus, the lauric acid-induced impairment of Akt phosphorylation brought about by insulin was rescued by the knockdown of either Hnf4α or Selenop. These results provide new insights into the regulation of SeP by fatty acids and suggest that SeP may mediate MCFA-induced hepatic insulin signal reduction.

5.
J Pharmacol Exp Ther ; 382(2): 199-207, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35906096

RESUMEN

Cyclosporine A (CsA) is an immunosuppressant applied worldwide for preventing graft rejection and autoimmune diseases. However, CsA elevates oxidative stress, which can lead to liver injuries. The present study aimed to clarify the mechanisms underlying the CsA-mediated oxidative stress. Among the redox proteins, CsA concentration-dependently downregulated Selenop-encoding selenoprotein P, a major circulating antioxidant protein reducing reactive oxygen species, in hepatocytes cell lines and primary hepatocytes. The luciferase assay identified the CsA-responsive element in the SELENOP promoter containing a putative binding site for forkhead box protein O (FoxO) 1. The CsA-mediated suppression on the SELENOP promoter was independent of the nuclear factor of activated T-cell, a classic target repressed by CsA. A chromatin immunoprecipitation assay showed that CsA suppressed the FoxO1 binding to the SELENOP promoter. Foxo1 knockdown significantly downregulated Selenop expression in H4IIEC3 cells. Furthermore, CsA downregulated FoxO1 by inactivating its upstream signal transducer and activator of transcription 3 (STAT3). Knockdown of Stat3 downregulated Foxo1 and Selenop expression in hepatocytes. These findings revealed a novel mechanism underlying CsA-induced oxidative stress by downregulating the STAT3-FoxO1-Selenop pathway in hepatocytes. SIGNIFICANCE STATEMENT: This study shows that Cyclosporine A (CsA) downregulates Selenop, an antioxidant protein, by suppressing the signal transducer and activator of transcription 3-forkhead box protein O1 pathway in hepatocytes, possibly one of the causations of CsA-induced oxidative stress in hepatocytes. The present study sheds light on the previously unrecognized CsA-redox axis.


Asunto(s)
Ciclosporina , Selenoproteína P , Antioxidantes/farmacología , Ciclosporina/farmacología , Proteína Forkhead Box O1/metabolismo , Factores de Transcripción Forkhead/metabolismo , Hepatocitos/metabolismo , Factor de Transcripción STAT3/metabolismo , Selenoproteína P/genética , Selenoproteína P/metabolismo
6.
Endocr J ; 69(8): 907-918, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-35321982

RESUMEN

Selenoprotein P is upregulated in type 2 diabetes, causing insulin and exercise resistance. We have previously reported that eicosapentaenoic acid (EPA) negatively regulates Selenop expression by suppressing Srebf1 in H4IIEC3 hepatocytes. However, EPA downregulated Srebf1 long before downregulating Selenop. Here, we report additional novel mechanisms for the Selenop gene regulation by EPA. EPA upregulated Foxo1 mRNA expression, which was canceled with the ERK1/2 inhibitor, but not with the PKA inhibitor. Foxo1 knockdown by siRNA initiated early suppression of Selenop, but not Srebf1, by EPA. However, EPA did not affect the nuclear translocation of the FoxO1 protein. Neither ERK1/2 nor PKA inhibitor affected FoxO1 nuclear translocation. In summary, FoxO1 knockdown accelerates the EPA-mediated Selenop downregulation independent of SREBP-1c in hepatocytes. EPA upregulates Foxo1 mRNA via the ERK1/2 pathway without altering its protein and nuclear translocation. These findings suggest redundant and conflicting transcriptional networks in the lipid-induced redox regulation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ácido Eicosapentaenoico , Regulación hacia Abajo , Proteína Forkhead Box O1 , Hepatocitos , Humanos , Insulina , ARN Mensajero , Selenoproteína P , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Esteroles
7.
Biol Pharm Bull ; 42(3): 373-378, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30606895

RESUMEN

A hepatokine is a collective term for liver-derived secretory factors whose previously-unrecognized functions have been recently elucidated. We have rediscovered selenoprotein P (SeP) and leukocyte cell-derived chemotaxin 2 (LECT2) as hepatokines that are involved in the development of insulin resistance and hyperglycemia. The aim of this study was to determine whether and, if so, how oral glucose loading alters the two hepatokines in humans. We measured concentrations of serum SeP and plasma LECT2 during 75 g oral glucose tolerance test (OGTT) (n = 20) in people with various degrees of glucose tolerance. In OGTT, concentrations of both serum SeP and plasma LECT2 decreased at 120 min compared with the baseline values, irrespective of the severity of glucose intolerance. Decrement of serum SeP during OGTT showed no correlations to the clinical parameters associated with insulin resistance or insulin secretion. In multiple stepwise regression analyses, plasma cortisol was selected as the variable to explain the changes in plasma concentrations of LECT2. The current data reveal the acute inhibitory actions of oral intake of glucose on circulating SeP and LECT2 in humans, irrespective of the severity of glucose intolerance. This study suggests that circulating SeP is regulated by the unknown clinical factors other than insulin and glucose during OGTT.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Resistencia a la Insulina/fisiología , Insulina/sangre , Péptidos y Proteínas de Señalización Intercelular/sangre , Selenoproteína P/sangre , Anciano , Glucemia , Femenino , Glucosa/administración & dosificación , Intolerancia a la Glucosa , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Persona de Mediana Edad
8.
J Biol Chem ; 292(26): 10791-10800, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28465347

RESUMEN

Selenoprotein P (encoded by SELENOP in humans, Selenop in rat), a liver-derived secretory protein, induces resistance to insulin and vascular endothelial growth factor (VEGF) in type 2 diabetes. Suppression of selenoprotein P may provide a novel therapeutic approach to treating type 2 diabetes; however, few drugs inhibiting SELENOP expression in hepatocytes have been identified. The present findings demonstrate that eicosapentaenoic acid (EPA) suppresses SELENOP expression by inactivating sterol regulatory element-binding protein-1c (SREBP-1c, encoded by Srebf1 in rat) in H4IIEC3 hepatocytes. Treatment with EPA caused concentration- and time-dependent reduction in SELENOP promoter activity. EPA activated AMP-activated protein kinase (AMPK); however, the inhibitory effect of EPA on SELENOP promoter activity was not canceled with an AMPK inhibitor compound C and dominant-negative AMPK transfection. Deletion mutant promoter assays and computational analysis of transcription factor-binding sites conserved among the species resulted in identification of a sterol regulatory element (SRE)-like site in the SELENOP promoter. A chromatin immunoprecipitation (ChIP) assay revealed that EPA decreases binding of SREBP-1c to the SELENOP promoter. Knockdown of Srebf1 resulted in a significant down-regulation of Selenop expression. Conversely, SREBP-1c overexpression inhibited the suppressive effect of EPA. These data provide a novel mechanism of action for EPA involving improvement of systemic insulin sensitivity through the regulation of selenoprotein P production independently of the AMPK pathway and suggest an additional approach to developing anti-diabetic drugs.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Ácido Eicosapentaenoico/farmacología , Hepatocitos/metabolismo , Selenoproteína P/biosíntesis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratas , Selenoproteína P/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
9.
Biochem Biophys Res Commun ; 478(3): 1310-6, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27562717

RESUMEN

Dieting often leads to body weight cycling involving repeated weight loss and regain. However, little information is available regarding rapid-response serum markers of overnutrition that predict body weight alterations during weight cycling. Here, we report the rapid response of serum leukocyte cell-derived chemotaxin 2 (LECT2), a hepatokine that induces insulin resistance in skeletal muscle, during diet-induced weight cycling in mice. A switch from a high-fat diet (HFD) to a regular diet (RD) in obese mice gradually decreased body weight but rapidly decreased serum LECT2 levels within 10 days. In contrast, a switch from a RD to a HFD rapidly elevated serum LECT2 levels. Serum LECT2 levels showed a positive correlation with liver triglyceride contents but not with adipose tissue weight. This study demonstrates the rapid response of LECT2 preceding body weight alterations during weight cycling in mice and suggests that measurement of serum LECT2 may be clinically useful in the management of obesity.


Asunto(s)
Peso Corporal , Hígado Graso/metabolismo , Hígado Graso/patología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Tejido Adiposo/patología , Adiposidad , Animales , Biomarcadores/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Insulina/sangre , Péptidos y Proteínas de Señalización Intercelular/sangre , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Tamaño de los Órganos , Hipernutrición/sangre , Hipernutrición/patología
10.
Neurochem Res ; 41(4): 696-706, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26620190

RESUMEN

Germline mutations in genes encoding succinate dehydrogenase subunits are associated with the development of familial pheochromocytomas and paragangliomas [hereditary paraganglioma/pheochromocytoma syndrome (HPPS)]. In particular, a mutation in succinate dehydrogenase subunit B (SDHB) is highly associated with abdominal paraganglioma and subsequent distant metastasis (malignant paraganglioma), indicating the importance of SDHB genetic testing. The discovery of HPPS suggests an association among genetic mitochondrial defects, tumor development, and catecholamine oversecretion. To investigate this association, we transfected pheochromocytoma cells (PC12) with SDHB-specific siRNA. SDHB silencing virtually abolished complex II activity, demonstrating the utility of this in vitro model for investigating the pseudo-hypoxic drive hypothesis. Lack of complex II activity resulting from RNA interference of SDHB increased tyrosine hydroxylase (TH; the rate-limiting enzyme in catecholamine biosynthesis) activity and catecholamine secretion. Reduced apoptosis was observed accompanied by Bcl-2 accumulation in PC12 cells, consistent with the phenotypes of paragangliomas with SDHB mutations. In addition, SDHB silencing increased reactive oxygen species (ROS) production and nuclear HIF1α stabilization under normoxic conditions. Furthermore, phenotypes induced by complex II activity knockdown were abolished by pretreatment with N-acetyl cysteine (an ROS scavenger) and by prior HIF1α knockdown, indicating an ROS- and HIF1α-dependent mechanism. Our results indicate that increased ROS may act as signal transduction messengers that induce HIF1α stabilization and may be necessary for the pseudo-hypoxic states observed in our experimental model. To our knowledge, this is the first study demonstrating that pseudo-hypoxic states resulting from SDHB knockdown are associated with increased TH activity and catecholamine oversecretion.


Asunto(s)
Catecolaminas/biosíntesis , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Succinato Deshidrogenasa/metabolismo , Animales , Apoptosis , Catecolaminas/metabolismo , Supervivencia Celular , Complejo II de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Mutación , Células PC12 , Paraganglioma/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño/genética , Ratas , Succinato Deshidrogenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
11.
Clin Calcium ; 26(3): 363-7, 2016 Mar.
Artículo en Japonés | MEDLINE | ID: mdl-26923972

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive fat accumulation in the form of triglycerides in the hepatocytes. A more severe form of NAFLD with necrosis, inflammation, and fibrosis is called non-alcoholic steatohepatitis (NASH). The liver is located in the center of the body's organ network and acts as a coordinator of glucose and lipid metabolism. Therefore, it is important to perform nutritional therapy of patients with NAFLD/NASH while maintaining the energy balance in the entire body.


Asunto(s)
Hígado Graso Alcohólico/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estado Nutricional/fisiología , Triglicéridos/metabolismo , Animales , Progresión de la Enfermedad , Humanos
12.
Biochem Biophys Res Commun ; 447(3): 407-12, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24713303

RESUMEN

Although the mineralocorticoid receptor (MR) is expressed in osteoblasts and osteocytes and frequently co-localizes with the glucocorticoid receptors (GR), its pathophysiological functions in bone remain elusive. We report here that pharmacologic inhibition of MR function with eplerenone resulted in increased bone mass, with stimulation of bone formation and suppression of resorption, while specific genetic deletion of MR in osteoblast lineage cells had no effect. Further, treatment with eplerenone as well as specific deletion of MR in osteocytes ameliorated the cortical bone thinning caused by slow-release prednisolone pellets. Thus, MR may be involved in the deleterious effects of glucocorticoid excess on cortical bone.


Asunto(s)
Enfermedades Óseas Metabólicas/inducido químicamente , Huesos/efectos de los fármacos , Glucocorticoides/efectos adversos , Osteogénesis/efectos de los fármacos , Receptores de Mineralocorticoides/fisiología , Animales , Enfermedades Óseas Metabólicas/metabolismo , Huesos/metabolismo , Eplerenona , Ratones , Ratones Endogámicos , Antagonistas de Receptores de Mineralocorticoides/farmacología , Osteocitos/efectos de los fármacos , Osteocitos/metabolismo , Prednisona/efectos adversos , Espironolactona/análogos & derivados , Espironolactona/farmacología
13.
Endocrinology ; 165(7)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38781447

RESUMEN

Leukocyte cell-derived chemotaxin 2 (LECT2) is a protein initially isolated as a neutrophil chemotactic factor. We previously found that LECT2 is an obesity-associated hepatokine that senses liver fat and induces skeletal muscle insulin resistance. In addition, hepatocyte-derived LECT2 activates macrophage proinflammatory activity by reinforcing the lipopolysaccharide (LPS)-induced c-Jun N-terminal kinase signaling. Based on these findings, we examined the effect of LECT2 deletion on nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH) caused by bacterial translocation. We created the bacterial translocation-mediated NAFLD/NASH model using LECT2 knockout mice (LECT2 KO) with 28 times a low-dose LPS injection under high-fat diet feeding conditions. LECT2 deletion exacerbated steatosis and significantly reduced p38 phosphorylation in the liver. In addition, LECT2 deletion increased macrophage infiltration with decreased M1/M2 ratios. LECT2 might contribute to protecting against lipid accumulation and macrophage activation in the liver under pathological conditions, which might be accomplished via p38 phosphorylation. This study provides novel aspects of LECT2 in the bacterial translocation-mediated NAFLD/NASH model.


Asunto(s)
Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intercelular , Lipopolisacáridos , Macrófagos , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico , Animales , Masculino , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Ratones , Lipopolisacáridos/toxicidad , Macrófagos/metabolismo , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Dieta Alta en Grasa/efectos adversos , Eliminación de Gen , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Biochem Biophys Res Commun ; 430(2): 664-9, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23211595

RESUMEN

Transcription factor E3 (TFE3) belongs to a basic helix-loop-helix family, and is involved in the biology of osteoclasts, melanocytes and their malignancies. We previously reported the metabolic effects of TFE3 on insulin in the liver and skeletal muscles in animal models. In the present study, we explored a novel role for TFE3 in a skeletal muscle cell line. When TFE3 was overexpressed in C2C12 myoblasts by adenovirus before induction of differentiation, myogenic differentiation of C2C12 cells was significantly inhibited. Adenovirus-mediated TFE3 overexpression also suppressed the gene expression of muscle regulatory factors (MRFs), such as MyoD and myogenin, during C2C12 differentiation. In contrast, knockdown of TFE3 using adenovirus encoding short-hairpin RNAi specific for TFE3 dramatically promoted myoblast differentiation associated with significantly increased expression of MRFs. Consistent with these findings, promoter analyses via luciferase reporter assay and electrophoretic mobility shift assay suggested that TFE3 negatively regulated myogenin promoter activity by direct binding to an E-box, E2, in the myogenin promoter. These findings indicated that TFE3 has a regulatory role in myoblast differentiation, and that transcriptional suppression of myogenin expression may be part of the mechanism of action.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Diferenciación Celular/genética , Regulación de la Expresión Génica , Mioblastos/citología , Miogenina/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Línea Celular , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Ratones , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico/metabolismo
15.
J Pharmacol Sci ; 121(1): 67-73, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23269235

RESUMEN

Sunitinib is an oral multitargeted receptor tyrosine kinase inhibitor with antiangiogenic and antitumor activity that mainly targets vascular endothelial growth factor receptors, and recently, it has been shown to be an active agent for the treatment of malignant pheochromocytomas. Previously, we demonstrated that sunitinib directly inhibited mTORC1 signaling in rat pheochromocytoma PC12 cells. Although autophagy is a highly regulated cellular process, its relevance to cancer seems to be complicated. It is of note that inhibition of mTORC1 is a prerequisite for autophagy induction. Indeed, direct mTORC1 inhibition initiates ULK1/2 autophosphorylation and subsequent Atg13 and FIP200 phosphorylation, inducing autophagy. Here, we demonstrated that sunitinib significantly increased the levels of LC3-II, concomitant with a decrease of p62 in PC12 cells. Following sunitinib treatment, immunofluorescent imaging revealed a marked increased punctate LC3-II distribution. Furthermore, Atg13 knockdown significantly reduced its protein level, which in turn abolished sunitinib-induced autophagy. Moreover, inhibition of autophagy by siRNAs targeting Atg13 or by pharmacological inhibition with ammonium chloride, enhanced both sunitinib-induced apoptosis and anti-proliferation. Thus, sunitinib-induced autophagy is dependent on the suppression of mTORC1 signaling and the formation of ULK1/2-Atg13-FIP200 complexes. Inhibition of autophagy may be a promising therapeutic option for improving the anti-tumor effect of sunitinib.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/patología , Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Indoles/farmacología , Feocromocitoma/patología , Proteínas/antagonistas & inhibidores , Pirroles/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de las Glándulas Suprarrenales/metabolismo , Animales , Proteínas Relacionadas con la Autofagia , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Asociadas a Microtúbulos/metabolismo , Terapia Molecular Dirigida , Complejos Multiproteicos , Células PC12 , Feocromocitoma/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Sunitinib , Serina-Treonina Quinasas TOR
16.
Endocrinology ; 164(6)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37103220

RESUMEN

Muscle atrophy is the cause and consequence of obesity. Proteasome dysfunction mediates obesity-induced endoplasmic reticulum (ER) stress and insulin resistance in the liver and adipose tissues. However, obesity-associated regulation of proteasome function and its role in the skeletal muscles remains underinvestigated. Here, we established skeletal muscle-specific 20S proteasome assembly chaperone-1 (PAC1) knockout (mPAC1KO) mice. A high-fat diet (HFD) activated proteasome function by ∼8-fold in the skeletal muscles, which was reduced by 50% in mPAC1KO mice. mPAC1KO induced unfolded protein responses in the skeletal muscles, which were reduced by HFD. Although the skeletal muscle mass and functions were not different between the genotypes, genes involved in the ubiquitin proteasome complex, immune response, endoplasmic stress, and myogenesis were coordinately upregulated in the skeletal muscles of mPAC1KO mice. Therefore, we introduced an immobilization-induced muscle atrophy model in obesity by combining HFD and immobilization. mPAC1KO downregulated atrogin-1 and MuRF1, together with their upstream Foxo1 and Klf15, and protected against disused skeletal muscle mass reduction. In conclusion, obesity elevates proteasome functions in the skeletal muscles. PAC1 deficiency protects mice from immobilization-induced muscle atrophy in obesity. These findings suggest obesity-induced proteasome activation as a possible therapeutic target for immobilization-induced muscle atrophy.


Asunto(s)
Atrofia Muscular , Complejo de la Endopetidasa Proteasomal , Ratones , Masculino , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratones Obesos , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismo
17.
Am J Physiol Endocrinol Metab ; 302(6): E615-25, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21878661

RESUMEN

Sunitinib is an oral multitargeted receptor tyrosine kinase inhibitor with antiangiogenic and antitumor activity that mainly targets vascular endothelial growth factor receptors (VEGFRs). Very recently, sunitinib has been shown to be an active agent for the treatment of malignant pheochromocytomas. However, it is unclear whether sunitinib acts only through an antiangiogenic mechanism or whether it may also directly target tumor cells. Sunitinib markedly induced apoptosis of PC12 cells in a dose-dependent and time-dependent manner. Furthermore, in support of these findings, we found that sunitinib induced a reduction in the expression of the antiapoptotic molecule Bcl-2 as well as dephosphorylation of the proapoptotic molecule BAD, which results in the activation of BAD in these cells. Consistent with these apoptotic effects, our results showed that sunitinib inhibited phosphorylation of Akt and mTOR and was followed by a reduction of S6K1, which is a well-known target of mTOR. Knockdown of VEGFR-2 attenuated the sunitinib-induced effects, including apoptosis and inhibition of signaling pathways such as the phosphorylation of Akt as well as mTOR, and Bcl-2, which confirmed that these effects could be mediated by VEGFR-2. In addition, silencing of S6K1 induced apoptosis accompanied by a decrease in the phosphorylation of BAD and Bcl-2, similar to that observed with sunitinib treatment. Thus, these results together suggest that sunitinib initially exerts its apoptotic effect through the inhibition of VEGFR-2, which, when followed by reduction of its downstream effectors, including Akt/mTOR/S6K1, may lead to inhibition of the antiapoptotic molecule Bcl-2 and activation of the proapoptotic molecule BAD in PC12 cells. However, PC12 cells do not precisely reflect the pathogenesis of malignant cells. Therefore, we confirmed the key findings by replicating these experiments in human neuroblastoma SK-N-SH cells.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Apoptosis/efectos de los fármacos , Indoles/farmacología , Proteína Oncogénica v-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Pirroles/farmacología , Proteínas Quinasas S6 Ribosómicas/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Proteína Letal Asociada a bcl/metabolismo , Animales , Antimetabolitos Antineoplásicos , Western Blotting , Bromodesoxiuridina , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colorantes , Etiquetado Corte-Fin in Situ , Indicadores y Reactivos , Análisis por Micromatrices , Células PC12 , Proteínas Proto-Oncogénicas c-bcl-2/efectos de los fármacos , ARN Interferente Pequeño/genética , Ratas , Sunitinib , Sales de Tetrazolio , Tiazoles , Proteína Letal Asociada a bcl/efectos de los fármacos
18.
Am J Physiol Endocrinol Metab ; 303(8): E1006-14, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22912364

RESUMEN

Sunitinib is an oral, small molecule multitargeted receptor tyrosine kinase inhibitor with antiangiogenic and antitumor activity that primarily targets vascular endothelial growth factor receptors (VEGFRs). Although sunitinib is an active agent for the treatment of malignant pheochromocytomas, it is unclear whether sunitinib acts through only antiangiogenic mechanisms or also directly targets tumor cells. We previously showed that sunitinib directly induced apoptosis of PC-12 cells. To further confirm these direct effects, we examined the effects of sunitinib on tyrosine hydroxylase (TH) (the rate-limiting enzyme in catecholamine biosynthesis) activity and catecholamine secretion in PC-12 cells and the underlying mechanisms. Sunitinib inhibited TH activity in a dose-dependent manner, and decreased TH protein levels. Consistent with this finding, sunitinib decreased TH phosphorylation at Ser(31) and Ser(40) and significantly decreased catecholamine secretion. VEGFR-2 knockdown attenuated these effects, including inhibition of TH activity and catecholamine secretion, suggesting that they were mediated by VEGFR-2. Sunitinib significantly decreased phospholipase C (PLC)-γ phosphorylation and subsequent protein kinase C (PKC) activity. Because Ser(40) phosphorylation significantly affects TH activity and is known to be regulated by PKC, sunitinib may inhibit Ser(40) phosphorylation via the VEGFR-2/PLC-γ/PKC pathway. Additionally, sunitinib markedly decreased the activity of extracellular signal-regulated kinase (ERK), but not c-Jun NH(2)-terminal kinase or p38 mitogen-activated protein kinase. Therefore, sunitinib may reduce TH Ser(31) phosphorylation through inhibition of the VEGFR-2/PLC-γ/PKC/Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/ERK pathway. Sunitinib also significantly reduced inositol 1,4,5-trisphosphate production. However, because PC-12 cells do not precisely reflect the pathogenesis of malignant cells, we confirmed the key findings in a human neuroblastoma cell line, SK-N-SH. In conclusion, sunitinib directly inhibits catecholamine synthesis and secretion in pheochromocytoma PC-12 cells.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Catecolaminas/biosíntesis , Catecolaminas/metabolismo , Indoles/farmacología , Fosfolipasa C gamma/metabolismo , Pirroles/farmacología , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Western Blotting , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/biosíntesis , Células PC12 , Feocromocitoma/metabolismo , Proteína Quinasa C/metabolismo , ARN Interferente Pequeño/genética , Ratas , Transducción de Señal/efectos de los fármacos , Sunitinib , Tirosina 3-Monooxigenasa/metabolismo
19.
Am J Physiol Endocrinol Metab ; 302(7): E896-902, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22297304

RESUMEN

The role of transcription factor E3 (TFE3), a bHLH transcription factor, in immunology and cancer has been well characterized. Recently, we reported that TFE3 activates hepatic IRS-2 and hexokinase, participates in insulin signaling, and ameliorates diabetes. However, the effects of TFE3 in other organs are poorly understood. Herein, we examined the effects of TFE3 on skeletal muscle, an important organ involved in glucose metabolism. We generated transgenic mice that selectively express TFE3 in skeletal muscles. These mice exhibit a slight acceleration in growth prior to adulthood as well as a progressive increase in muscle mass. In TFE3 transgenic muscle, glycogen stores were more than twofold than in wild-type mice, and this was associated with an upregulation of genes involved in glucose metabolism, specifically glucose transporter 4, hexokinase II, and glycogen synthase. Consequently, exercise endurance capacity was enhanced in this transgenic model. Furthermore, insulin sensitivity was enhanced in transgenic mice and exhibited better improvement after 4 wk of exercise training, which was associated with increased IRS-2 expression. The effects of TFE3 on glucose metabolism in skeletal muscle were different from that in the liver, although they did, in part, overlap. The potential role of TFE3 in regulating metabolic genes and glucose metabolism within skeletal muscle suggests that it may be used for treating metabolic diseases as well as increasing endurance in sport.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Regulación de la Expresión Génica/fisiología , Resistencia a la Insulina/genética , Glucógeno Hepático/metabolismo , Músculo Esquelético/metabolismo , Adenoviridae/genética , Animales , Western Blotting , Células Cultivadas , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 4/metabolismo , Glucógeno Sintasa/metabolismo , Hexoquinasa/metabolismo , Humanos , Hígado/metabolismo , Glucógeno Hepático/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Condicionamiento Físico Animal/fisiología , Resistencia Física/fisiología , ARN/biosíntesis , ARN/genética , Transducción de Señal/genética , Regulación hacia Arriba
20.
Biochem Biophys Res Commun ; 420(4): 931-6, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22475483

RESUMEN

Dicer is a rate-limiting enzyme for microRNA (miRNA) synthesis. To determine the effects of Dicer on adipogenesis, we performed stage-specific knockdown of Dicer using adenovirus encoding short-hairpin RNAi against Dicer in 3T3-L1 cells. When cells were infected with the adenovirus before induction of adipocyte differentiation, Dicer RNAi suppressed the gene expression of inducers of adipocyte differentiation such as PPARγ, C/EBPα, and FAS in 3T3-L1 cells during adipocyte differentiation. Concurrently, both adipocyte differentiation and cellular lipid accumulation were cancelled by Dicer RNAi when compared with control RNAi. Meanwhile, we addressed the roles of Dicer in lipid synthesis and accumulation in the final stages of differentiation. When the differentiated cells at day 4 after induction of differentiation were infected with adenovirus Dicer RNAi, cellular lipid accumulation was unchanged. Consistent with this, Dicer RNAi had no effects on the expression of genes related to cellular lipid accumulation, including PPARγ and FAS. Thus, Dicer controls proadipogenic genes such as C/EBPα and PPARγ in the early, but not in the late, stage of adipogenesis via regulation of miRNA synthesis.


Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis/genética , ARN Helicasas DEAD-box/fisiología , Ribonucleasa III/fisiología , Células 3T3-L1 , Animales , Proteína beta Potenciadora de Unión a CCAAT/genética , ARN Helicasas DEAD-box/genética , Regulación de la Expresión Génica , Lípidos/biosíntesis , Ratones , PPAR gamma/genética , Ribonucleasa III/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA