Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35806035

RESUMEN

One of the main goals of recent bioinorganic chemistry studies has been to design and synthesize novel substances to treat human diseases. The promising compounds are metal-based and metal ion binding components such as vanadium-based compounds. The potential anticancer action of vanadium-based compounds is one of area of investigation in this field. In this study, we present five oxovanadium(IV) and dioxovanadium(V) complexes as potential PTP1B inhibitors with anticancer activity against the MCF-7 breast cancer cell line, the triple negative MDA-MB-231 breast cancer cell line, and the human keratinocyte HaCaT cell line. We observed that all tested compounds were effective inhibitors of PTP1B, which correlates with anticancer activity. [VO(dipic)(dmbipy)]·2 H2O (Compound 4) and [VOO(dipic)](2-phepyH)·H2O (Compound 5) possessed the greatest inhibitory effect, with IC50 185.4 ± 9.8 and 167.2 ± 8.0 nM, respectively. To obtain a better understanding of the relationship between the structure of the examined compounds and their activity, we performed a computer simulation of their binding inside the active site of PTP1B. We observed a stronger binding of complexes containing dipicolinic acid with PTP1B. Based on our simulations, we suggested that the studied complexes exert their activity by stabilizing the WPD-loop in an open position and limiting access to the P-loop.


Asunto(s)
Neoplasias de la Mama , Compuestos Organometálicos , Simulación por Computador , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Compuestos Organometálicos/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Vanadio/química , Vanadio/farmacología
2.
Molecules ; 27(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36432140

RESUMEN

Designing catalyst systems based on transition metal ions and activators using the principles of green chemistry is a fundamental research goal of scientists due to the reduction of poisonous solvents, metal salts and organic ligands released into the environment. Urgent measures to reduce climate change are in line with the goals of sustainable development and the new restrictive laws ordained by the European Union. In this report, we attempted to use known oxovanadium(IV) green complex compounds with O, N and S donor ligands, i.e., [VO(TDA)phen] • 1.5 H2O (TDA = thiodiacetate), (phen = 1,10-phenanthroline), oxovanadium(IV) microclusters with 2-phenylpyridine (oxovanadium(IV) cage), [VOO(dipic)(2-phepyH)] • H2O (dipic = pyridine-2,6-dicarboxylate anion), (2-phepyH = 2-phenylpyridine), [VO(dipic)(dmbipy)] • 2H2O (dmbipy = 4,4'-dimethoxy-2,2'-dipyridyl) and [VO(ODA)(bipy)] • 2 H2O (ODA = oxydiacetate), (bipy = 2,2'-bipyridine), as precatalysts in oligomerization reactions of 3-buten-2-ol, 2-propen-1-ol, 2-chloro-2-propen-1-ol and 2,3-dibromo-2-propen-1-ol. The precatalysts, in most cases, turned out to be highly active because the catalytic activity exceeded 1000 g mmol-1·h-1. In addition, the oligomers were characterized by Fourier-transform infrared spectroscopy (FTIR), matrix-assisted laser desorption/ionization (MALDI-TOF-MS), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques.


Asunto(s)
Alquenos , Fenantrolinas , Ligandos , Fenantrolinas/química
3.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34360819

RESUMEN

Photodynamic therapy (PDT) has become an alternative to standard cancer treatment methods such as surgery, chemotherapy and radiotherapy. The uniqueness of this method relies on the possibility of using various photosensitizers (PS) that absorb and convert light emission in radical oxygen-derived species (ROS). They can be present alone or in the presence of other compounds such as metal organic frameworks (MOFs), non-tubules or polymers. The interaction between DNA and metal-based complexes plays a key role in the development of new anti-cancer drugs. The use of coordination compounds in PDT has a significant impact on the amount ROS generated, quantum emission efficiency (Φem) and phototoxic index (PI). In this review, we will attempt to systematically review the recent literature and analyze the coordination complexes used as PS in PDT. Finally, we compared the anticancer activities of individual coordination complexes and discuss future perspectives. So far, only a few articles link so many transition metal ion coordination complexes of varying degrees of oxidation, which is why this review is needed by the scientific community to further expand this field worldwide. Additionally, it serves as a convenient collection of important, up-to-date information.


Asunto(s)
Neoplasias/tratamiento farmacológico , Fotoquimioterapia , Fármacos Fotosensibilizantes/uso terapéutico , Línea Celular Tumoral , Humanos , Estructuras Metalorgánicas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo
4.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34576048

RESUMEN

Oxidative stress plays an important role in the pathogenesis of many serious diseases, including cancer, atherosclerosis, coronary artery disease, Parkinson's disease, Alzheimer's disease, stroke and myocardial infarction. In the body's natural biochemical processes, harmful free radicals are formed, which can be removed with the help of appropriate enzymes, a balanced diet or the supply of synthetic antioxidant substances such as flavonoids, vitamins or anthocyanins to the body. Due to the growing demand for antioxidant substances, new complex compounds of transition metal ions with potential antioxidant activity are constantly being sought. In this study, four oxovanadium(IV) and dioxovanadium(V) dipicolinate (dipic) complexes with 1,10-phenanthroline (phen), 2,2'-bipyridyl (bipy) and the protonated form of 2-phenylpyridine (2-phephyH): (1) [VO(dipic)(H2O)2]·2 H2O, (2) [VO(dipic)(phen)]·3 H2O, (3) [VO(dipic)(bipy)]·H2O and (4) [VOO(dipic)](2-phepyH)·H2O were synthesized including one new complex, so far unknown and not described in the literature, i.e., [VOO(dipic)](2-phepyH)·H2O. The oxovanadium(IV) dipicolinate complexes with 1,10-phenanthroline and 2,2'-bipyridyl have been characterized by several physicochemical methods: NMR, MALDI-TOF-MS, IR, but new complex [VOO(dipic)](2-phepyH)·H2O has been examined by XRD to confirm its structure. The antioxidant activities of four complexes have been examined by the nitrotetrazolium blue (NBT) method towards superoxide anion. All complexes exhibit high reactivity with superoxide anion and [VOO(dipic)](2-phepyH)·H2O has higher antioxidant activity than L-ascorbic acid. Our studies confirmed that high basicity of the auxiliary ligand increases the reactivity of the complex with the superoxide radical.


Asunto(s)
Estrés Oxidativo/efectos de los fármacos , Óxidos/química , Ácidos Picolínicos/química , Uranio/química , Vanadatos/química , Antioxidantes/química , Antioxidantes/farmacología , Ácido Ascórbico/química , Complejos de Coordinación/química , Ligandos , Superóxidos/química
5.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34638706

RESUMEN

Breast cancer is the most common cancer of women-it affects more than 2 million women worldwide. PTP1B phosphatase can be one of the possible targets for new drugs in breast cancer therapy. In this paper, we present new curcumin derivatives featuring a 4-piperidone ring as PTP1B inhibitors and ROS inducers. We performed cytotoxicity analysis for twelve curcumin derivatives against breast cancer MCF-7 and MDA-MB-231 cell lines and the human keratinocyte HaCaT cell line. Furthermore, because curcumin is a known antioxidant, we assessed antioxidant effects in its derivatives. For the most potent cytotoxic compounds, we determined intracellular ROS and PTP1B phosphatase levels. Moreover, for curcumin and its derivatives, we performed real-time microscopy to observe the photosensitizing effect. Finally, computational analysis was performed for the curcumin derivatives with an inhibitory effect against PTP1B phosphatase to assess the potential binding mode of new inhibitors within the allosteric site of the enzyme. We observed that two tested compounds are better anticancer agents than curcumin. Moreover, we suggest that blocking the -OH group in phenolic compounds causes an increase in the cytotoxicity effect, even at a low concentration. Furthermore, due to this modification, a higher level of ROS is induced, which correlates with a lower level of PTP1B.


Asunto(s)
Neoplasias de la Mama , Curcumina , Citotoxinas/farmacología , Proteínas de Neoplasias/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteolisis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/enzimología , Curcumina/análogos & derivados , Curcumina/farmacología , Femenino , Humanos , Células MCF-7
6.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751682

RESUMEN

This publication presents the new trends and opportunities for further development of coordination compounds used in the chemical industry. The review describes the influence of various physicochemical factors regarding the coordination relationship (for example, steric hindrance, electron density, complex geometry, ligand), which condition technological processes. Coordination compounds are catalysts in technological processes used during organic synthesis, for example: Oxidation reactions, hydroformylation process, hydrogenation reaction, hydrocyanation process. In this article, we pointed out the possibilities of using complex compounds in catalysis, and we noticed what further research should be undertaken for this purpose.


Asunto(s)
Complejos de Coordinación/química , Iones/química , Metales/química , Catálisis , Industria Química , Ligandos , Oxidación-Reducción , Estereoisomerismo , Elementos de Transición/química
7.
Nitric Oxide ; 93: 102-114, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31541733

RESUMEN

Elevated levels of reactive nitrogen species, alteration in redox balance and deregulated redox signaling are common hallmarks of cancer progression and chemoresistance. However, depending on the cellular context, distinct reactive nitrogen species are also hypothesized to mediate cytotoxic activity and are thus used in anticancer therapies. We present here the dual face of nitric oxide and its derivatives in cancer biology. Main derivatives of nitric oxide, such as nitrogen dioxide and peroxynitrite cause cell death by inducing protein and lipid peroxidation and/or DNA damage. Moreover, they control the activity of important protein players within the pro- and anti-apoptotic signaling pathways. Thus, the control of intracellular reactive nitrogen species may become a sophisticated tool in anticancer strategies.


Asunto(s)
Neoplasias/tratamiento farmacológico , Donantes de Óxido Nítrico/uso terapéutico , Óxido Nítrico/metabolismo , Animales , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Mitocondrias/efectos de los fármacos , Óxido Nítrico/química , Donantes de Óxido Nítrico/farmacología , Ácido Peroxinitroso/química , Ácido Peroxinitroso/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas/química , Proteínas/metabolismo
8.
J Mol Recognit ; 30(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27885734

RESUMEN

The influence of the different side chain residues on the thermodynamic and kinetic parameters for complexation reactions of the Co2+ and Ni2+ ions has been investigated by using the isothermal titration calorimetry (ITC) technique supported by potentiometric titration data. The study was concerned with the 2 common tripodal aminocarboxylate ligands, namely, nitrilotriacetic acid and N-(2-hydroxyethyl) iminodiacetic acid. Calorimetric measurements (ITC) were run in the 2-(N-morpholino)ethanesulfonic acid hydrate (2-(N-morpholino) ethanesulfonic acid), piperazine-N,N'-bis(2-ethanesulfonic acid), and dimethylarsenic acid buffers (0.1 mol L-1 , pH 6) at 298.15 K. The quantification of the metal-buffer interactions and their incorporation into the ITC data analysis enabled to obtain the pH-independent and buffer-independent thermodynamic parameters (K, ΔG, ΔH, and ΔS) for the reactions under study. Furthermore, the kinITC method was applied to obtain kinetic information on complexation reactions from the ITC data. Correlations, based on kinetic and thermodynamic data, between the kinetics of formation of Co2+ and Ni2+ complexes and their thermodynamic stabilities are discussed.


Asunto(s)
Cobalto/química , Iminoácidos/química , Níquel/química , Ácido Nitrilotriacético/química , Calorimetría , Cinética , Termodinámica
9.
Biometals ; 30(2): 261-275, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28204978

RESUMEN

The use of protonated N-heterocyclic compound, i.e. 2,2'-bipyridinium cation, [bpyH+], enabled to obtain the new nitrilotriacetate oxidovanadium(IV) salt of the stoichiometry [bpyH][VO(nta)(H2O)]H2O. The X-ray measurements have revealed that the compound comprises the discrete mononuclear [VO(nta)(H2O)]- coordination ion that can be rarely found among other known compounds containing nitrilotriacetate oxidovanadium(IV) moieties. The antitumor activity of [bpyH][VO(nta)(H2O)]H2O and its phenanthroline analogue, [phenH][VO(nta)(H2O)](H2O)0.5, towards human osteosarcoma cell lines (MG-63 and HOS) has been assessed (the LDH and BrdU tests) and referred to cis-Pt(NH3)2Cl2 (used as a positive control). The compounds exert a stronger cytotoxic effect on MG-63 and HOS cells than in untransformed human osteoblast cell line. Thus, the [VO(nta)(H2O)]- containing coordination compounds can be considered as possible antitumor agents in the osteosarcoma model of bone-related cells in culture.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Ácido Nitrilotriacético/farmacología , Osteoblastos/efectos de los fármacos , Compuestos de Vanadio/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/química , Relación Dosis-Respuesta a Droga , Humanos , Ácido Nitrilotriacético/análogos & derivados , Osteoblastos/patología , Potenciometría , Compuestos de Vanadio/química
10.
Biometals ; 28(2): 307-20, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25656562

RESUMEN

The aim of this work was to find a relationship between physicochemical properties of the oxovanadium(IV) complexes, namely [VO(ODA)(H2O)2], [VO(ODA)(phen)]·1.5H2O and [VO(ODA)(bipy)]·2H2O (ODA = oxydiacetate) as well as [VO(H2O)5](2+), and their biological activity. A potentiometric titration method has been used to characterize the stability of the complexes in aqueous solutions. Furthermore, the reactivity of the complexes towards superoxide free radicals was assessed by employing the NBT assay as well as a cyclic voltammetry (CV) technique. Additionally, the investigations of the antioxidant properties of the complexes were complemented by studying their reactivity towards organic radicals (the ABTS and DPPH tests). Finally, the biological properties of the complexes were investigated in relation to their cytoprotective activity against the oxidative damage generated exogenously by using hydrogen peroxide in the Hippocampal neuronal cell line HT22 (the MTT and LDH tests). The obtained results showed that all the compounds under study display antioxidant properties but a concentration-depended protective effect against the oxidative damage was found for [VO(ODA)(bipy)]·2H2O only.


Asunto(s)
Depuradores de Radicales Libres/farmacología , Fármacos Neuroprotectores/farmacología , Vanadatos/química , 2,2'-Dipiridil/química , Acetatos/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Estabilidad de Medicamentos , Depuradores de Radicales Libres/química , Hipocampo/citología , Concentración de Iones de Hidrógeno , Ratones , Fármacos Neuroprotectores/química , Fenantrolinas/química , Soluciones , Superóxidos/química
11.
J Fluoresc ; 24(3): 713-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24337873

RESUMEN

The fluorescence quenching of different coumarin derivatives (7-hydroxy-4-methylcoumarin, 5,7-dimethoxycoumarin, 7-amino-4-methyl-3-coumarinylacetic acid, 7-ethoxy-4-methylcoumarin, 7-methoxycoumarin, 7-hydroxycoumarin, 7-hydroxy-4-methyl-3-coumarinylacetic acid and 7-amino-4-methylcoumarin) by 4-hydroxy-TEMPO in aqueous solutions at the room temperature was studied with the use of UV-Vis absorption spectroscopy as well as a steady-state and time-resolved fluorescence spectroscopy. In order to understand the mechanism of quenching the absorption and fluorescence emission spectra of all coumarins along with fluorescence decays were recorded under the action of 4-hydroxy-TEMPO. The Stern-Volmer plots (both from time-averaged and time-resolved measurements) displayed no positive (upward) deviation from a linearity. The fluorescence quenching mechanism was found to be entirely dynamic, what was additionally confirmed by the registration of Stern-Volmer plots at different temperatures. The Stern-Volmer quenching constants and bimolecular quenching rate constants were obtained for all coumarins studied at the room temperature. The findings demonstrate the possibility of developing an analytical method for the quantitative determination of the free radicals' scavenger, 4-hydroxy-TEMPO.


Asunto(s)
Cumarinas/análisis , Cumarinas/química , Óxidos N-Cíclicos/química , Fluorescencia , Depuradores de Radicales Libres/química , Hidroxilamina/química , Agua/química , Modelos Moleculares , Estructura Molecular , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
12.
Molecules ; 19(6): 8533-43, 2014 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-24959680

RESUMEN

The purpose of this study was to examine the application of the coordinated cis-[Cr(C2O4)(pm)(OH)2]+ cation where pm denotes pyridoxamine, as a specific sensing ion for the detection of hydrogen peroxide (H2O2). The proposed method for H2O2 detection includes two key steps. The first step is based on the nonenzymatic decarboxylation of pyruvate upon reaction with H2O2, while the second step is based on the interaction of cis-[Cr(C2O4)(pm)(OH2)2]+ with the CO2 released in the previous step. Using this method H2O2 generated during glutamate-induced oxidative stress was detected in HT22 hippocampal cells. The coordination ion cis-[Cr(C2O4)(pm)(OH2)2]+ and the spectrophotometric stopped-flow technique were applied to determine the CO2 concentration in cell lysates, supernatants and cell-free culture medium. Prior to CO2 assessment pyruvate was added to all samples studied. Pyruvate reacts with H2O2 with 1:1 stoichiometry, and consequently the amount of CO2 released in this reaction is equivalent to the amount of H2O2.


Asunto(s)
Técnicas Biosensibles/métodos , Dióxido de Carbono/química , Peróxido de Hidrógeno/análisis , Piridoxamina/química , Ácido Pirúvico/química , Cationes Monovalentes/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Descarboxilación , Ácido Glutámico/química , Ácido Glutámico/farmacología , Hipocampo/citología , Humanos , Peróxido de Hidrógeno/química , Estrés Oxidativo , Piridoxamina/análogos & derivados
13.
Sci Total Environ ; 928: 172579, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38641100

RESUMEN

Large-scale cement production generates significant amounts of carbon dioxide from the breakdown of limestone, contributing to environmental pollution. Clean production of eco-friendly three-dimensional geopolymers can be used as environmentally friendly building materials. Replacing Portland cement with eco-friendly materials correlates with reduced energy consumption, costs, and negative environmental impact. In addition, geopolymer cement has above-average physical and chemical properties, which in many cases exceed conventional Portland cement. The literature review summarizes the latest research in the production of geopolymers following the principles of green chemistry and sustainable development goals. Examples of upcycling of construction waste, industrial waste (fly ash, silica fume, slag, tailing), demolition waste, agriculture solid waste (rice husk, palm oil), and mining waste into functional geopolymer materials will be discussed. Additionally, the review focused on innovative applications and physicochemical properties of functional geopolymer materials.

14.
Sci Total Environ ; 934: 173250, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761928

RESUMEN

Isocyanides and isocyanates are some of the most reactive compounds in organic chemistry, making them perceived as compounds with high potential for use in both the laboratory and industry. With their high reactivity also comes several disadvantages, most notably their potentially high toxicity. The following article is a collection of information on the toxic effects of the isocyanide group on the human body and the environment. Information on the mechanism of how these harmful substances affect living tissues and the environment, worldwide information on how to protect against these chemicals, current regulations, and exposure limits for specific countries is compiled. The latest research on the application uses of isocyanates and isocyanides is also outlined, as well as the latest safer and greener methods and techniques to work with these compounds. Additionally, the presented article can serve as a brief guide to the organic toxicity of a group of isocyanates and isocyanates.


Asunto(s)
Cianuros , Isocianatos , Isocianatos/toxicidad , Cianuros/química , Humanos , Contaminantes Ambientales/toxicidad , Exposición a Riesgos Ambientales
15.
Dalton Trans ; 53(12): 5732, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38450670

RESUMEN

Correction for 'Porous oligomeric materials synthesised using a new, highly active precatalyst based on ruthenium(III) and 2-phenylpyridine' by Kacper Poblocki et al., Dalton Trans., 2024, 53, 4194-4203, https://doi.org/10.1039/D3DT04091G.

16.
Dalton Trans ; 53(9): 4194-4203, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38323842

RESUMEN

There are few literature reports on using precatalysts based on ruthenium(II/III) ions in the polymerization of olefins. Therefore, a new coordination compound was designed based on ruthenium(III) ion and 2-phenylpyridine. The resulting monocrystal was characterized by X-ray diffraction (XRD), solid-state (photo)IR spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The new ruthenium(III) complex compound was used as a precatalyst in the oligomerization reactions of ethylene, 2-propen-1-ol, 2-chloro-2-propen-1-ol, 3-butene-2-ol and 2,3-dibromo-2-propen-1-ol with methylaluminoxane and ethylaluminium dichloride as activators. The catalytic activity of the newly discovered ruthenium(III) complex compound ranges from 159.5 (for 2-chloro-2-propen-1-ol) to 755.6 (for ethylene) g mmol-1 h-1 bar-1, indicating that it is a chemical compound with high catalytic activity. In addition, the oligomerization reaction products were subjected to physicochemical characterization, using BET (Brunauer-Emmett-Teller isotherm), mass spectrometry (MALDI-TOF-MS), Fourier transform infrared (FT-IR) spectroscopy, NMR, TGA, differential scanning calorimetry (DSC), and the morphology of the porous polymeric materials was investigated by SEM. The distinguishing feature of the obtained precatalyst is its high catalytic activity under mild reaction conditions, a rare phenomenon. Compared with other precatalysts, it is the most active ruthenium(II/III) ion-based catalytic material used in oligo- and polymerization reactions of ethylene.

17.
Mol Neurobiol ; 61(1): 148-166, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37589832

RESUMEN

Estrogens function in numerous physiological processes including controlling brain cell growth and differentiation. 2-Methoxestradiol (2-ME2), a 17ß-estradiol (E2) metabolite, is known for its anticancer effects as observed both in vivo and in vitro. 2-ME2 affects all actively dividing cells, including neurons. The study aimed to determine whether 2-ME2 is a potentially cancer-protective or rather neurodegenerative agent in a specific tissue culture model as well as a clinical setup. In this study, 2-ME2 activity was determined in a Parkinson's disease (PD) in vitro model based on the neuroblastoma SH-SY5Y cell line. The obtained results suggest that 2-ME2 generates nitro-oxidative stress and controls heat shock proteins (HSP), resulting in DNA strand breakage and apoptosis. On the one hand, it may affect intensely dividing cells preventing cancer development; however, on the other hand, this kind of activity within the central nervous system may promote neurodegenerative diseases like PD. Thus, the translational value of 2-ME2's neurotoxic activity in a PD in vitro model was also investigated. LC-MS/MS technique was used to evaluate estrogens and their derivatives, namely, hydroxy and methoxyestrogens, in PD patients' blood, whereas the stopped-flow method was used to assess hydrogen peroxide (H2O2) levels. Methoxyestrogens and H2O2 levels were increased in patients' blood as compared to control subjects, but hydoxyestrogens were simultaneously decreased. From the above, we suggest that the determination of plasma levels of methoxyestrogens and H2O2 may be a novel PD biomarker. The presented research is the subject of the pending patent application "The use of hydrogen peroxide and 17ß-estradiol and its metabolites as biomarkers in the diagnosis of neurodegenerative diseases," no. P.441360.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Humanos , 2-Metoxiestradiol , Peróxido de Hidrógeno , Enfermedad de Parkinson/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cromatografía Liquida , Neuroblastoma/metabolismo , Espectrometría de Masas en Tándem , Estrés Oxidativo , Estradiol , Apoptosis , Estrógenos , Línea Celular Tumoral
18.
Materials (Basel) ; 16(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37176190

RESUMEN

In this paper, a synthesis of two innovative coordination compounds, based on chromium(III) and cobalt(II) ions with N,O-donor ligands (nitrilotriacetate, dipicolinate) and 4-acetylpyridine, is reported. The obtained metal-organic compounds were structurally characterized using the single-crystal X-ray diffraction (XRD) method. The well-defined chromium(III) and cobalt(II) complexes were used as precatalysts in the oligomerization reaction of 2-chloro-2-propen-1-ol and 2-propen-1-ol with methylaluminoxane (MMAO) as an activator. The products of the oligomerization reaction were subjected to full physicochemical characteristics, i.e., time-of-flight mass spectrometry (MALDI-TOF-MS), TGA, and differential scanning calorimetry (DSC) methods. The catalytic activity of the precatalysts in both reactions was calculated and compared with other catalysts known in the literature.

19.
Int J Nanomedicine ; 18: 2507-2523, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37197025

RESUMEN

Introduction: Solid lipid nanoparticles (SLN) have been considered lately as promising drug delivery system in treatment of many human diseases including cancers. We previously studied potential drug compounds that were effective inhibitors of PTP1B phosphatase - possible target for breast cancer treatment. Based on our studies, two complexes were selected for encapsulation into the SLNs, the compound 1 ([VO(dipic)(dmbipy)] · 2 H2O) and compound 2 ([VOO(dipic)](2-phepyH) · H2O). Here, we investigate the effect of encapsulation of those compounds on cell cytotoxicity against MDA-MB-231 breast cancer cell line. The study also included the stability evaluation of the obtained nanocarriers with incorporated active substances and characterization of their lipid matrix. Moreover, the cell cytotoxicity studies against the MDA-MB-231 breast cancer cell line in comparison and in combination with vincristine have been performed. Wound healing assay was carried out to observe cell migration rate. Methods: The properties of the SLNs such as particle size, zeta potential (ZP), and polydispersity index (PDI) were investigated. The morphology of SLNs was observed by scanning electron microscopy (SEM), while the crystallinity of the lipid particles was analyzed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The cell cytotoxicity of complexes and their encapsulated forms was carried out against MDA-MB-231 breast cancer cell line using standard MTT protocols. The wound healing assay was performed using live imaging microscopy. Results: SLNs with a mean size of 160 ± 25 nm, a ZP of -34.00 ± 0.5, and a polydispersity index of 30 ± 5% were obtained. Encapsulated forms of compounds showed significantly higher cytotoxicity also in co-incubation with vincristine. Moreover, our research shows that the best compound was complex 2 encapsulated into lipid nanoparticles. Conclusion: We observed that encapsulation of studied complexes into SLNs increases their cell cytotoxicity against MDA-MB-231 cell line and enhanced the effect of vincristine.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Vincristina , Lípidos/química , Células MDA-MB-231 , Nanopartículas/química , Neoplasias de la Mama/tratamiento farmacológico , Tamaño de la Partícula , Portadores de Fármacos/química
20.
Materials (Basel) ; 15(4)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35207920

RESUMEN

Polyolefins are used in everyday life, including in the production of many types of plastic. In addition, polyolefins account for over 50% of the polymers produced in the world. After conducting the oligomerization reactions of 2-propen-1-ol, 2-chloro-2-propen-1-ol, and norborene, polyolefins are obtained. In this report, two complexes of oxovanadium(IV) and dioxovanadium(V) with dipicolinate, 2-phenylyridine, and 4,4'-dimethoxy-2,2'-bipyridyl as precatalysts for 2-propen-1-ol, 2-chloro-2-propen-1-ol, and norborene oligomerizations are prepared. We present for the first time the new dipicolinate complex compound of oxovanadium(IV) with 4,4'-dimetoxy-2,2'-bipyridyl. Both complexes were tested for catalytic activity in the oligomerization reactions of 2-propen-1-ol, 2-chloro-2-propen-1-ol, and norbornene. Both synthesized complexes showed high catalytic activity in these oligomerization reactions, except for the oligomerization of norbornene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA