Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Electrophoresis ; 44(1-2): 190-202, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35973415

RESUMEN

Exosomes, a subset of extracellular vesicles (EVs, 30-200-nm diameter), serve as biomolecular snapshots of their cell of origin and vehicles for intercellular communication, playing roles in biological processes, including homeostasis maintenance and immune modulation. The large-scale processing of exosomes for use as therapeutic vectors has been proposed, but these applications are limited by impure, low-yield recoveries from cell culture milieu (CCM). Current isolation methods are also limited by tedious and laborious workflows, especially toward an isolation of EVs from CCM for therapeutic applications. Employed is a rapid (<10 min) EV isolation method on a capillary-channeled polymer fiber spin-down tip format. EVs are isolated from the CCM of suspension-adapted human embryonic kidney cells (HEK293), one of the candidate cell lines for commercial EV production. This batch solid-phase extraction technique allows 1012 EVs to be obtained from only 100-µl aliquots of milieu, processed using a benchtop centrifuge. The tip-isolated EVs were characterized using transmission electron microscopy, multi-angle light scattering, absorbance quantification, an enzyme-linked immunosorbent assay to tetraspanin marker proteins, and a protein purity assay. It is believed that the demonstrated approach has immediate relevance in research and analytical laboratories, with opportunities for production-level scale-up projected.


Asunto(s)
Exosomas , Vesículas Extracelulares , Humanos , Polímeros , Células HEK293 , Vesículas Extracelulares/metabolismo , Riñón
2.
Anal Bioanal Chem ; 414(13): 3813-3825, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35412060

RESUMEN

Capillary-channeled polymer fiber (C-CP) solid-phase extraction tips have demonstrated the ability to produce clean and concentrated extracellular vesicle (EV) recoveries from human urine samples in the small EV size range (< 200 nm). An organic modifier-assisted hydrophobic interaction chromatography (HIC) approach is applied in the spin-tip method under non-denaturing conditions-preserving the structure and bioactivity of the recovered vesicles. The C-CP tip method can employ either acetonitrile or glycerol as an elution modifier. The EV recoveries from the C-CP tip method (using both of these solvents) were compared to those obtained using the ultracentrifugation (UC) and polymer precipitation (exoEasy and ExoQuick) EV isolation methods for the same human urine specimen. The biophysical and quantitative characteristics of the recovered EVs using the five isolation methods were assessed based on concentration, size distribution, shape, tetraspanin surface marker protein content, and purity. In comparison to the traditionally used UC method and commercially available polymeric precipitation-based isolation kits, the C-CP tip introduces significant benefits with efficient (< 15 min processing of 12 samples here) and low-cost (< $1 per tip) EV isolations, employing sample volumes (10 µL-1 mL) and concentration (up to 4 × 1012 EVs mL-1) scales relevant for fundamental and clinical analyses. Recoveries of the target vesicles versus matrix proteins were far superior for the tip method versus the other approaches.


Asunto(s)
Vesículas Extracelulares , Polímeros , Glicerol , Humanos , Extracción en Fase Sólida , Solventes
3.
Analyst ; 146(13): 4314-4325, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34105528

RESUMEN

Extracellular vesicles (EVs) play essential roles in biological systems based on their ability to carry genetic and protein cargos, intercede in cellular communication and serve as vectors in intercellular transport. As such, EVs are species of increasing focus from the points of view of fundamental biochemistry, clinical diagnostics, and therapeutics delivery. Of particular interest are 30-200 nm EVs called exosomes, which have demonstrated high potential for use in diagnostic and targeted delivery applications. The ability to collect exosomes from patient biofluid samples would allow for comprehensive yet remote diagnoses to be performed. While several exosome isolation methods are in common use, they generally produce low recoveries, whose purities are compromised by concomitant inclusion of lipoproteins, host cell proteins, and protein aggregates. Those methods often work on lengthy timescales (multiple hours) and result in very low throughput. In this study, capillary-channeled polymer (C-CP) fiber micropipette tips were employed in a hydrophobic interaction chromatography (HIC) solid-phase extraction (SPE) workflow. Demonstrated is the isolation of exosomes from human urine, saliva, cervical mucus, serum, and goat milk matrices. This method allows for quick (<15 min) and low-cost (<$1 per tip) isolations at sample volume and time scales relevant for clinical applications. The tip isolation was evaluated using absorbance (scattering) detection, nanoparticle tracking analysis (NTA), and transmission electron microscopy (TEM). Exosome purity was assessed by Bradford assay, based on the removal of free proteins. An enzyme-linked immunosorbent assay (ELISA) to the CD81 tetraspanin protein was used to confirm the presence of the known exosomal-biomarker on the vesicles.


Asunto(s)
Exosomas , Vesículas Extracelulares , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros , Extracción en Fase Sólida
4.
Anal Bioanal Chem ; 412(19): 4713-4724, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32468278

RESUMEN

Exosomes, a subset of the extracellular vesicle (EV) group of organelles, hold great potential for biomarker detection, therapeutics, disease diagnosis, and personalized medicine applications. The promise and potential of these applications are hindered by the lack of an efficient means of isolation, characterization, and quantitation. Current methods for exosome and EV isolation (including ultracentrifugation, microfiltration, and affinity-based techniques) result in impure recoveries with regard to remnant matrix species (e.g., proteins, genetic material) and are performed on clinically irrelevant time and volume scales. To address these issues, a polyethylene terephthalate (PET) capillary-channeled polymer (C-CP) fiber stationary phase is employed for the solid-phase extraction (SPE) of EVs from various matrices using a micropipette tip-based format. The hydrophobic interaction chromatography (HIC) processing and a spin-down workflow are carried out using a table-top centrifuge. Capture and subsequent elution of intact, biologically active exosomes are verified via electron microscopy and bioassays. The performance of this method was evaluated by capture and elution of exosome standards from buffer solution and three biologically relevant matrices: mock urine, reconstituted non-fat milk, and exosome-depleted fetal bovine serum (FBS). Recoveries were evaluated using UV-Vis absorbance spectrophotometry and ELISA assay. The dynamic binding capacity (50%) for the 1-cm-long (~ 5 µL bed volume) tips was determined using a commercial exosome product, yielding a value of ~ 7 × 1011 particles. The novel C-CP fiber spin-down tip approach holds promise for the isolation of exosomes and other EVs from various matrices with high throughput, low cost, and high efficiency. Graphical abstract.


Asunto(s)
Exosomas/química , Poliésteres/química , Extracción en Fase Sólida/métodos , Animales , Bovinos , Diseño de Equipo , Humanos , Leche/química , Tereftalatos Polietilenos/química , Suero/química , Extracción en Fase Sólida/instrumentación , Orina/química
5.
Talanta ; 252: 123779, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35994804

RESUMEN

In the emerging field of phyto-nanotechnology, 30-200 nm plant-derived extracellular vesicles (PDEVs) are now known to contain active biomolecules that mediate cell-to-cell communication processes in a manner very similar to exosomes in mammalian cells. The ability to deliver cargo across cellular membranes suggests that botanical systems could be used in the mass production of therapeutic vectors to transport exogenous molecules into human cells. The fundamental biochemical characteristics of PDEVs remain poorly understood due to the lack of efficient methods to isolate and characterize these nanovesicles. Described here is a rapid PDEV isolation method using a hydrophobic interaction chromatography (HIC)-based extraction performed on a capillary-channeled polymer (C-CP) fiber spin-down tip. The C-CP solid-phase extraction method is performed using a standard table-top centrifuge, enabling the isolation and concentration of PDEVs (>1 × 1010 particles from 100 µL of sample). PDEVs of 189 nm average diameter were obtained from 20 common fruit and vegetable stocks. The size, integrity, and purity of the recovered PDEVs were assessed using transmission electron microscopy (TEM), multi-angle light scattering (MALS), absorbance quantification, a protein purity assay, and an enzyme-linked immunosorbent assay (ELISA) to the PEN1 PDEV surface marker protein. The HIC C-CP tip isolation method allows for concentrated PDEV recoveries (up to 2 × 1011 EVs) on reasonable time scales (<15 min) and low cost (<$1), with the purity and integrity fit for fundamental research and downstream applications.


Asunto(s)
Vesículas Extracelulares , Polímeros , Animales , Humanos , Polímeros/química , Verduras , Frutas , Interacciones Hidrofóbicas e Hidrofílicas , Mamíferos
6.
Anal Chim Acta ; 1167: 338578, 2021 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-34049630

RESUMEN

Exosomes are membrane-bound, cell-secreted vesicles, with sizes ranging from 30 to 150 nm. Exosomes in blood plasma have become proposed targets as measurable indicators of disease conditions. Current methods for plasma-based exosome isolation are time-consuming, complex, and have high operational costs. One of the most commonly reported shortcomings of current isolation protocols is the co-extraction of lipoproteins (e.g. low-density lipoproteins, LDLs) with the target exosomes. This report describes the use of a rapid, single-operation hydrophobic interaction chromatography (HIC) procedure on a polyester (PET) capillary-channeled polymer (C-CP) fiber column, demonstrating the ability to efficiently purify exosomes. The method has previously been demonstrated for isolation of exosomes from diverse biological matrices, but questions were raised about the potential co-elution of LDLs. In the method described herein, a step-gradient procedure sequentially elutes spiked lipoproteins and blood plasma-originating exosomes in 10 min, with the LDLs excluded from the desired exosome fraction. Mass spectrometry (MS) was used to characterize an impurity in the primary LDL material, identifying the presence of exosomal material. Transmission electron microscopy (TEM) and an enzyme-linked immunosorbent assay (ELISA) were used to identify the various elution components. The method serves both as a rapid means of high purity exosome isolation as well as a screening tool for the purity of LDL samples with respect to extracellular vesicles.


Asunto(s)
Exosomas , Cromatografía , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lipoproteínas LDL , Plasma , Poliésteres , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA