Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 649
Filtrar
1.
Cell ; 187(1): 44-61.e17, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38134932

RESUMEN

Cytokines employ downstream Janus kinases (JAKs) to promote chronic inflammatory diseases. JAK1-dependent type 2 cytokines drive allergic inflammation, and patients with JAK1 gain-of-function (GoF) variants develop atopic dermatitis (AD) and asthma. To explore tissue-specific functions, we inserted a human JAK1 GoF variant (JAK1GoF) into mice and observed the development of spontaneous AD-like skin disease but unexpected resistance to lung inflammation when JAK1GoF expression was restricted to the stroma. We identified a previously unrecognized role for JAK1 in vagal sensory neurons in suppressing airway inflammation. Additionally, expression of Calcb/CGRPß was dependent on JAK1 in the vagus nerve, and CGRPß suppressed group 2 innate lymphoid cell function and allergic airway inflammation. Our findings reveal evolutionarily conserved but distinct functions of JAK1 in sensory neurons across tissues. This biology raises the possibility that therapeutic JAK inhibitors may be further optimized for tissue-specific efficacy to enhance precision medicine in the future.


Asunto(s)
Dermatitis Atópica , Inmunidad Innata , Pulmón , Células Receptoras Sensoriales , Animales , Humanos , Ratones , Citocinas , Dermatitis Atópica/inmunología , Inflamación , Pulmón/inmunología , Linfocitos , Células Receptoras Sensoriales/enzimología
2.
Cell ; 173(2): 355-370.e14, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625052

RESUMEN

We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events. We also discovered 33 such variants in oncogenes, including missenses in MET, RET, and PTPN11 associated with high gene expression. We nominated 47 additional predisposition variants from prioritized VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, expression effect, and co-localization with mutations and modified residues. Our integrative approach links rare predisposition variants to functional consequences, informing future guidelines of variant classification and germline genetic testing in cancer.


Asunto(s)
Células Germinativas/metabolismo , Neoplasias/patología , Variaciones en el Número de Copia de ADN , Bases de Datos Genéticas , Eliminación de Gen , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Células Germinativas/citología , Mutación de Línea Germinal , Humanos , Pérdida de Heterocigocidad/genética , Mutación Missense , Neoplasias/genética , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Supresoras de Tumor/genética
3.
Nature ; 619(7970): 585-594, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37468583

RESUMEN

Understanding kidney disease relies on defining the complexity of cell types and states, their associated molecular profiles and interactions within tissue neighbourhoods1. Here we applied multiple single-cell and single-nucleus assays (>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has provided a high-resolution cellular atlas of 51 main cell types, which include rare and previously undescribed cell populations. The multi-omic approach provides detailed transcriptomic profiles, regulatory factors and spatial localizations spanning the entire kidney. We also define 28 cellular states across nephron segments and interstitium that were altered in kidney injury, encompassing cycling, adaptive (successful or maladaptive repair), transitioning and degenerative states. Molecular signatures permitted the localization of these states within injury neighbourhoods using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2 million neighbourhoods) provided corresponding linkages to active immune responses. These analyses defined biological pathways that are relevant to injury time-course and niches, including signatures underlying epithelial repair that predicted maladaptive states associated with a decline in kidney function. This integrated multimodal spatial cell atlas of healthy and diseased human kidneys represents a comprehensive benchmark of cellular states, neighbourhoods, outcome-associated signatures and publicly available interactive visualizations.


Asunto(s)
Perfilación de la Expresión Génica , Enfermedades Renales , Riñón , Análisis de la Célula Individual , Transcriptoma , Humanos , Núcleo Celular/genética , Riñón/citología , Riñón/lesiones , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Transcriptoma/genética , Estudios de Casos y Controles , Imagenología Tridimensional
4.
Development ; 150(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37982452

RESUMEN

Mutations that disrupt centrosome biogenesis or function cause congenital kidney developmental defects and fibrocystic pathologies. Yet how centrosome dysfunction results in the kidney disease phenotypes remains unknown. Here, we examined the consequences of conditional knockout of the ciliopathy gene Cep120, essential for centrosome duplication, in the nephron and collecting duct progenitor niches of the mouse embryonic kidney. Cep120 loss led to reduced abundance of both cap mesenchyme and ureteric bud populations, due to a combination of delayed mitosis, increased apoptosis and premature differentiation of progenitor cells. These defects resulted in dysplastic kidneys at birth, which rapidly formed cysts, displayed increased interstitial fibrosis and decline in kidney function. RNA sequencing of embryonic and postnatal kidneys from Cep120-null mice identified changes in the pathways essential for development, fibrosis and cystogenesis. Our study defines the cellular and developmental defects caused by centrosome dysfunction during kidney morphogenesis and identifies new therapeutic targets for patients with renal centrosomopathies.


Asunto(s)
Riñón , Enfermedades Renales Poliquísticas , Animales , Humanos , Ratones , Riñón/metabolismo , Nefronas/metabolismo , Centrosoma/metabolismo , Enfermedades Renales Poliquísticas/metabolismo , Ratones Noqueados , Fibrosis , Proteínas de Ciclo Celular/metabolismo
6.
J Am Soc Nephrol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771634

RESUMEN

BACKGROUND: Diabetes is expected to directly impact renal glycosylation, yet to date, there has not been a comprehensive evaluation of alterations in N-glycan composition in the glomeruli of patients with diabetic kidney disease (DKD). METHODS: We used untargeted mass spectrometry imaging to identify N-glycan structures in healthy and sclerotic glomeruli in FFPE sections from needle biopsies of five patients with DKD and three healthy kidney samples. Regional proteomics was performed on glomeruli from additional biopsies from the same patients to compare the abundances of enzymes involved in glycosylation. Secondary analysis of single nuclei transcriptomics (snRNAseq) data was used to inform on transcript levels of glycosylation machinery in different cell types and states. RESULTS: We detected 120 N-glycans, and among them identified twelve of these protein post-translated modifications that were significantly increased in glomeruli. All glomeruli-specific N-glycans contained an N-acetyllactosamine (LacNAc) epitope. Five N-glycan structures were highly discriminant between sclerotic and healthy glomeruli. Sclerotic glomeruli had an additional set of glycans lacking fucose linked to their core, and they did not show tetra-antennary structures that are common in healthy glomeruli. Orthogonal omics analyses revealed lower protein abundance and lower gene expression involved in synthesizing fucosylated and branched N-glycans in sclerotic podocytes. In snRNAseq and regional proteomics analyses, we observed that genes and/or proteins involved in sialylation and LacNAc synthesis were also downregulated in DKD glomeruli, but this alteration remained undetectable by our spatial N-glycomics assay. CONCLUSIONS: Integrative spatial glycomics, proteomics, and transcriptomics revealed protein N-glycosylation characteristic of sclerotic glomeruli in DKD.

7.
Clin Infect Dis ; 78(5): 1148-1153, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38441140

RESUMEN

Fever of unknown origin (FUO) is a clinical conundrum for patients and clinicians alike, and imaging studies are often performed as part of the diagnostic workup of these patients. Recently, the Society of Nuclear Medicine and Molecular Imaging convened and approved a guideline on the use of nuclear medicine tools for FUO. The guidelines support the use of 2-18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) in adults and children with FUO. 18F-FDG PET/CT allows detection and localization of foci of hypermetabolic lesions with high sensitivity because of the 18F-FDG uptake in glycolytically active cells that may represent inflammation, infection, or neoplasia. Clinicians should consider and insurers should cover 18F-FDG PET/CT when evaluating patients with FUO, particularly when other clinical clues and preliminary studies are unrevealing.


Asunto(s)
Fiebre de Origen Desconocido , Fluorodesoxiglucosa F18 , Medicina Nuclear , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Fiebre de Origen Desconocido/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Medicina Nuclear/métodos , Adulto , Radiofármacos , Niño , Guías de Práctica Clínica como Asunto
8.
Clin Exp Rheumatol ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38372731

RESUMEN

OBJECTIVES: GMCSF+T-cells may be involved in pathogenesis of rheumatoid arthritis (RA), and polyfunctionality may be a marker of pathogenicity. Although, higher frequencies of CD4+GMCSF+ T-cells have been reported, there are no data on CD8+GMCSF+ T-cells or polyfunctionality.Our objective was to enumerate frequencies of CD8+GMCSF+ T cells in RA blood and synovial fluid (SF), and assess their polyfunctionality, memory phenotype and cytotoxic ability. METHODS: This study included RA patients (blood samples,in some with paired synovial fluid (SF)), healthy controls (HC) (blood) and SpA patients (SF). In some RA patients' blood was sampled twice, before and 16-24 weeks after methotrexate (MTX) treatment. After mononuclear cell isolation from blood and SF, ex-vivo stimulation using PMA/Ionomycin was done, and cells were stained (surface and intracellular after permeabilisation/fixation). Subsequently, frequencies of GMCSF+CD8+ and CD4+ T-cells, polyfunctionality (TNFα, IFNγ, IL-17), phenotype (memory) and perforin/granzyme expression were assessed by flowcytometry. RESULTS: There was no significant difference in frequencies of GMCSF+CD8+ (3.7, 4.1%, p=0.540) or GMCSF+CD4+ T-cells (4.5, 5.2%, p=0.450) inblood of RA and HC. However, there was significant enrichment of both CD8+GMCSF+ (5.8, 3.9%, p=0.0045) and CD4+GMCSF+ (8.5, 4.5%, p=0.0008) T-cells inSF compared to blood in RA patients. Polyfunctional triple cytokine positive TNFα+IFNγ+GMCSF+CD8+T-cells (81, 36%, p=0.049) and CD4+T-cells (48, 32%, p=0.010) was also higher in SF compared to blood in RA. CD8+ T cells showed higher frequency of effector-memory phenotype and granzyme-B expression in RA-SF. On longitudinal follow-up, blood CD4+GMCSF+ T-cells significantly declined (4.6, 2.9%, p=0.0014) post-MTX. CONCLUSIONS: We report a novel finding of enrichment of CD8+GMCSF+ in addition to CD4+GMCSF+ T-cells in RA-SF. These cells showed higher polyfunctionality for TNFα and IFNγ, and effector memory phenotype suggesting their involvement in RA pathogenesis.

9.
Mycoses ; 67(5): e13730, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712824

RESUMEN

BACKGROUND: Due to a delay in diagnosis by conventional techniques and high mortality, the development of a standardised and rapid non-culture-based technique is an unmet need in pulmonary, gastrointestinal, and disseminated forms of mucormycosis. Though limited studies have been conducted for molecular diagnosis, there are no established serologic tests for this highly fatal infection. OBJECTIVE: To develop and evaluate an indirect in-house enzyme-linked immunosorbent assay (ELISA) utilising antigens of Rhizopus arrhizus for detecting anti-Rhizopus antibodies (IgG and IgM) in sera of patients with mucormycosis. METHODS: We extracted both secretory and mycelial Rhizopus antigens using standardised protocols. Bradford assay was used for protein quantification. We then standardised an indirect ELISA using R. arrhizus mycelial and secretory antigens (10.0 µg/mL in bicarbonate buffer pH 9.2) for detecting anti-Rhizopus IgG and IgM antibodies in patient sera. We included patients with mucormycosis, other fungal infections, and healthy controls. Antibody index value (E-value) was calculated for each patient sample. RESULTS: Asparagine broth culture filtrate utilising 85% ammonium sulphate salt fractionation and mycelial homogenate grown in yeast extract peptone dextrose (YPD) broth precipitated with trichloroacetic acid (TCA) yielded a large amount of good-quality protein for the assay. We included 55 patients with mucormycosis (rhino-orbito-cerebral mucormycosis [ROCM, n = 39], pulmonary [n = 15], gastrointestinal [n = 1]), 24 with other fungal infections (probable aspergillosis [n = 14], candidiasis [n = 10]), and healthy controls (n = 16). The sensitivity of the antibody test for diagnosing mucormycosis ranged from 83.6-92.7% for IgG and 72.7-87.3% for IgM, with a specificity of 91.7-92.5% for IgG and 80-82.5% for IgM. The sera from patients with other fungal infections and healthy individuals did not show significant cross-reactivity. CONCLUSION: The detection of anti-Rhizopus IgG antibody performed significantly better in comparison to IgM-based ELISA for diagnosing both ROCM (sensitivity of 84.6% vs. 69.2%) and pulmonary cases (86.6% vs. 80.0%). More extensive studies are required to confirm our findings.


Asunto(s)
Anticuerpos Antifúngicos , Antígenos Fúngicos , Ensayo de Inmunoadsorción Enzimática , Inmunoglobulina G , Inmunoglobulina M , Mucormicosis , Rhizopus , Sensibilidad y Especificidad , Pruebas Serológicas , Mucormicosis/diagnóstico , Mucormicosis/microbiología , Mucormicosis/inmunología , Humanos , Rhizopus/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Antígenos Fúngicos/inmunología , Antígenos Fúngicos/análisis , Pruebas Serológicas/métodos , Anticuerpos Antifúngicos/sangre , Inmunoglobulina M/sangre , Inmunoglobulina G/sangre , Femenino , Masculino , Persona de Mediana Edad
10.
J Assoc Physicians India ; 72(5): 77-88, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38881115

RESUMEN

Chronic kidney disease (CKD) is a major contributor to morbidity and mortality in India. CKD often coexists with heart failure (HF), diabetes, and hypertension. All these comorbidities are risk factors for renal impairment. HF and CKD are pathophysiologically intertwined, and the deterioration of one can worsen the prognosis of the other. There is a need for safe renal pharmacological therapies that target both CKD and HF and are also useful in hypertension and diabetes. Neurohormonal activation achieved through the activation of the sympathetic nervous system (SNS), the renin-angiotensin-aldosterone system (RAAS), and the natriuretic peptide system (NPS) is fundamental in the pathogenesis and progression of CKD and HF. Angiotensin receptor neprilysin inhibitor (ARNi), sodium-glucose cotransporter 2 inhibitors (SGLT-2i), and selective ß1-blocker (B1B) bisoprolol suppress this neurohormonal activation. They also have many other cardiorenal benefits across a wide range of CKD patients with or without concomitant HF, diabetes, or hypertension. This consensus statement from India explores the place of ARNi, SGLT-2i, and bisoprolol in the management of CKD patients with or without HF and other comorbidities.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Bisoprolol , Insuficiencia Renal Crónica , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , India/epidemiología , Bisoprolol/uso terapéutico , Antagonistas de Receptores de Angiotensina/uso terapéutico , Consenso , Antagonistas de Receptores Adrenérgicos beta 1/uso terapéutico
11.
J Assoc Physicians India ; 72(1): 63-73, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38736076

RESUMEN

Heart failure (HF) is a global health concern that is prevalent in India as well. HF is reported at a younger age in Indian patients with comorbidity of type 2 diabetes (T2DM) in approximately 50% of patients. Sodium-glucose cotransporter-2 inhibitors (SGLT2i), originally approved for T2DM, are new guideline-recommended and approved treatment strategies for HF. Extensive evidence highlights that SGLT2i exhibits profound cardiovascular (CV) benefits beyond glycemic control. SGLT2i, in conjunction with other guideline-directed medical therapies (GMDT), has additive effects in improving heart function and reducing adverse HF outcomes. The benefits of SGLT2i are across a spectrum of patients, with and without diabetes, suggesting their potential place in broader HF populations irrespective of ejection fraction (EF). This consensus builds on the updated evidence of the efficacy and safety of SGLT2i in HF and recommends its place in therapy with a focus on Indian patients with HF.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , India , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones
12.
J Infect Dis ; 228(Suppl 4): S233-S236, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37788496

RESUMEN

Even before the coronavirus disease 2019 pandemic, infections were a major threat to human health, as the third leading cause of death and the leading cause of morbidity among all human diseases. Although conventional imaging studies are routinely used for patients with infections, they provide structural or anatomic information only. Molecular imaging technologies enable noninvasive visualization of molecular processes at the cellular level within intact living subjects, including patients, and hold great potential for infections. We hope that this supplement will spur interest in the field and establish new collaborations to develop and translate novel molecular imaging approaches to the clinic.


Asunto(s)
COVID-19 , Humanos , Imagen Molecular
13.
J Infect Dis ; 228(Suppl 4): S291-S296, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37788499

RESUMEN

BACKGROUND: Microbial-based cancer treatments are an emerging field, with multiple bacterial species evaluated in animal models and some advancing to clinical trials. Noninvasive bacteria-specific imaging approaches can potentially support the development and clinical translation of bacteria-based cancer treatments by assessing the tumor and off-target bacterial colonization. METHODS: 18F-Fluorodeoxysorbitol (18F-FDS) positron emission tomography (PET), a bacteria-specific imaging approach, was used to visualize an attenuated strain of Yersinia enterocolitica, currently in clinical trials as a microbial-based cancer treatment, in murine models of breast cancer. RESULTS: Y. enterocolitica demonstrated excellent 18F-FDS uptake in in vitro assays. Whole-body 18F-FDS PET demonstrated a significantly higher PET signal in tumors with Y. enterocolitica colonization compared to those not colonized, in murine models utilizing direct intratumor or intravenous administration of bacteria, which were confirmed using ex vivo gamma counting. Conversely, 18F-fluorodeoxyglucose (18F-FDG) PET signal was not different in Y. enterocolitica colonized versus uncolonized tumors. CONCLUSIONS: Given that PET is widely used for the management of cancer patients, 18F-FDS PET could be utilized as a complementary approach supporting the development and clinical translation of Y. enterocolitica-based tumor-targeting bacterial therapeutics.


Asunto(s)
Neoplasias , Tomografía de Emisión de Positrones , Humanos , Ratones , Animales , Tomografía de Emisión de Positrones/métodos , Radioisótopos de Flúor , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Fluorodesoxiglucosa F18 , Radiofármacos
14.
J Infect Dis ; 228(Suppl 4): S249-S258, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37788506

RESUMEN

Although nearly a century has elapsed since the discovery of penicillin, bacterial infections remain a major global threat. Global antibiotic use resulted in an astounding 42 billion doses of antibiotics administered in 2015 with 128 billion annual doses expected by 2030. This overuse of antibiotics has led to the selection of multidrug-resistant "super-bugs," resulting in increasing numbers of patients being susceptible to life-threatening infections with few available therapeutic options. New clinical tools are therefore urgently needed to identify bacterial infections and monitor response to antibiotics, thereby limiting overuse of antibiotics and improving overall health. Next-generation molecular imaging affords unique opportunities to target and identify bacterial infections, enabling spatial characterization as well as noninvasive, temporal monitoring of the natural course of the disease and response to therapy. These emerging noninvasive imaging approaches could overcome several limitations of current tools in infectious disease, such as the need for biological samples for testing with their associated sampling bias. Imaging of living bacteria can also reveal basic biological insights about their behavior in vivo.


Asunto(s)
Infecciones Bacterianas , Humanos , Infecciones Bacterianas/diagnóstico por imagen , Infecciones Bacterianas/tratamiento farmacológico , Antibacterianos/uso terapéutico , Bacterias , Penicilinas/uso terapéutico , Imagen Molecular
15.
J Infect Dis ; 228(Suppl 4): S281-S290, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37788505

RESUMEN

BACKGROUND: Vertebral discitis-osteomyelitis (VDO) is a devastating infection of the spine that is challenging to distinguish from noninfectious mimics using computed tomography and magnetic resonance imaging. We and others have developed novel metabolism-targeted positron emission tomography (PET) radiotracers for detecting living Staphylococcus aureus and other bacteria in vivo, but their head-to-head performance in a well-validated VDO animal model has not been reported. METHODS: We compared the performance of several PET radiotracers in a rat model of VDO. [11C]PABA and [18F]FDS were assessed for their ability to distinguish S aureus, the most common non-tuberculous pathogen VDO, from Escherichia coli. RESULTS: In the rat S aureus VDO model, [11C]PABA could detect as few as 103 bacteria and exhibited the highest signal-to-background ratio, with a 20-fold increased signal in VDO compared to uninfected tissues. In a proof-of-concept experiment, detection of bacterial infection and discrimination between S aureus and E coli was possible using a combination of [11C]PABA and [18F]FDS. CONCLUSIONS: Our work reveals that several bacteria-targeted PET radiotracers had sufficient signal to background in a rat model of S aureus VDO to be potentially clinically useful. [11C]PABA was the most promising tracer investigated and warrants further investigation in human VDO.


Asunto(s)
Discitis , Osteomielitis , Infecciones Estafilocócicas , Humanos , Ratas , Animales , Discitis/diagnóstico por imagen , Ácido 4-Aminobenzoico , Escherichia coli , Tomografía de Emisión de Positrones/métodos , Infecciones Estafilocócicas/diagnóstico por imagen , Osteomielitis/microbiología , Bacterias , Staphylococcus aureus , Radiofármacos
16.
Am J Physiol Renal Physiol ; 325(6): F695-F706, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37767571

RESUMEN

Kidney organoids are three-dimensional structures generated from pluripotent stem cells (PSCs) that are capable of recapitulating the major structures of mammalian kidneys. As this technology is expected to be a promising tool for studying renal biology, drug discovery, and regenerative medicine, the functional capacity of kidney organoids has emerged as a critical question in the field. Kidney organoids produced using several protocols harbor key structures of native kidneys. Here, we review the current state, recent advances, and future challenges in the functional characterization of kidney organoids, strategies to accelerate and enhance kidney organoid functions, and access to PSC resources to advance organoid research. The strategies to construct physiologically relevant kidney organoids include the use of organ-on-a-chip technologies that integrate fluid circulation and improve organoid maturation. These approaches result in increased expression of the major tubular transporters and elements of mechanosensory signaling pathways suggestive of improved functionality. Nevertheless, continuous efforts remain crucial to create kidney tissue that more faithfully replicates physiological conditions for future applications in kidney regeneration medicine and their ethical use in patient care.NEW & NOTEWORTHY Kidney organoids are three-dimensional structures derived from stem cells, mimicking the major components of mammalian kidneys. Although they show great promise, their functional capacity has become a critical question. This review explores the advancements and challenges in evaluating and enhancing kidney organoid function, including the use of organ-on-chip technologies, multiomics data, and in vivo transplantation. Integrating these approaches to further enhance their physiological relevance will continue to advance disease modeling and regenerative medicine applications.


Asunto(s)
Riñón , Células Madre Pluripotentes , Animales , Humanos , Riñón/fisiología , Regeneración , Nefronas , Organoides/metabolismo , Mamíferos
17.
Am J Pathol ; 192(2): 195-207, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34767812

RESUMEN

To catalyze severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research, including development of novel interventive and preventive strategies, the progression of disease was characterized in a robust coronavirus disease 2019 (COVID-19) animal model. In this model, male and female golden Syrian hamsters were inoculated intranasally with SARS-CoV-2 USA-WA1/2020. Groups of inoculated and mock-inoculated uninfected control animals were euthanized at 2, 4, 7, 14, and 28 days after inoculation to track multiple clinical, pathology, virology, and immunology outcomes. SARS-CoV-2-inoculated animals consistently lost body weight during the first week of infection, had higher lung weights at terminal time points, and developed lung consolidation per histopathology and quantitative image analysis measurements. High levels of infectious virus and viral RNA were reliably present in the respiratory tract at days 2 and 4 after inoculation, corresponding with widespread necrosis and inflammation. At day 7, when the presence of infectious virus was rare, interstitial and alveolar macrophage infiltrates and marked reparative epithelial responses (type II hyperplasia) dominated in the lung. These lesions resolved over time, with only residual epithelial repair evident by day 28 after inoculation. The use of quantitative approaches to measure cellular and morphologic alterations in the lung provides valuable outcome measures for developing therapeutic and preventive interventions for COVID-19 using the hamster COVID-19 model.


Asunto(s)
COVID-19/patología , Animales , COVID-19/virología , Cricetinae , Modelos Animales de Enfermedad , Femenino , Pulmón/patología , Masculino , Mesocricetus , SARS-CoV-2
18.
Curr Opin Nephrol Hypertens ; 32(3): 249-256, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36811638

RESUMEN

PURPOSE OF REVIEW: Defining molecular changes in key kidney cell types across lifespan and in disease states is essential to understand the pathogenetic basis of disease progression and targeted therapies. Various single cell approaches are being applied to define disease associated molecular signatures. Key considerations include the choice of reference tissue or 'normal' for comparison to diseased human specimens and a benchmark reference atlas. We provide an overview of select single cell technologies, key considerations for experimental design, quality control, choices and challenges associated with assay type and source for reference tissue. RECENT FINDINGS: Several initiatives including Kidney Precision Medicine Project, Human Biomolecular Molecular Atlas Project, Genitourinary Disease Molecular Anatomy Project, ReBuilding a Kidney consortium, Human Cell Atlas and Chan Zuckerburg Initiative are generating single cell atlases of 'normal' or disease kidney. Different sources of kidney tissue are used as reference. Signatures of injury, resident pathology and procurement associated biological and technical artifacts have been identified in human kidney reference tissue. SUMMARY: Committing to a particular reference or 'normal' tissue has significant implications in interpretation of data from disease samples or in ageing. Voluntarily donated kidney tissue from healthy individuals is generally unfeasible. Having reference datasets for different types of 'normal' tissue can aid in mitigating the confounds of choice of reference tissue and sampling biases.


Asunto(s)
Enfermedades Renales , Riñón , Humanos , Riñón/metabolismo , Enfermedades Renales/metabolismo , Envejecimiento
19.
Am J Kidney Dis ; 82(3): 322-332.e1, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37263570

RESUMEN

RATIONALE & OBJECTIVE: Patients hospitalized with COVID-19 are at increased risk for major adverse kidney events (MAKE). We sought to identify plasma biomarkers predictive of MAKE in patients hospitalized with COVID-19. STUDY DESIGN: Prospective cohort study. SETTING & PARTICIPANTS: A total of 576 patients hospitalized with COVID-19 between March 2020 and January 2021 across 3 academic medical centers. EXPOSURE: Twenty-six plasma biomarkers of injury, inflammation, and repair from first available blood samples collected during hospitalization. OUTCOME: MAKE, defined as KDIGO stage 3 acute kidney injury (AKI), dialysis-requiring AKI, or mortality up to 60 days. ANALYTICAL APPROACH: Cox proportional hazards regression to associate biomarker level with MAKE. We additionally applied the least absolute shrinkage and selection operator (LASSO) and random forest regression for prediction modeling and estimated model discrimination with time-varying C index. RESULTS: The median length of stay for COVID-19 hospitalization was 9 (IQR, 5-16) days. In total, 95 patients (16%) experienced MAKE. Each 1 SD increase in soluble tumor necrosis factor receptor 1 (sTNFR1) and sTNFR2 was significantly associated with an increased risk of MAKE (adjusted HR [AHR], 2.30 [95% CI, 1.86-2.85], and AHR, 2.26 [95% CI, 1.73-2.95], respectively). The C index of sTNFR1 alone was 0.80 (95% CI, 0.78-0.84), and the C index of sTNFR2 was 0.81 (95% CI, 0.77-0.84). LASSO and random forest regression modeling using all biomarkers yielded C indexes of 0.86 (95% CI, 0.83-0.89) and 0.84 (95% CI, 0.78-0.91), respectively. LIMITATIONS: No control group of hospitalized patients without COVID-19. CONCLUSIONS: We found that sTNFR1 and sTNFR2 are independently associated with MAKE in patients hospitalized with COVID-19 and can both also serve as predictors for adverse kidney outcomes. PLAIN-LANGUAGE SUMMARY: Patients hospitalized with COVID-19 are at increased risk for long-term adverse health outcomes, but not all patients suffer long-term kidney dysfunction. Identification of patients with COVID-19 who are at high risk for adverse kidney events may have important implications in terms of nephrology follow-up and patient counseling. In this study, we found that the plasma biomarkers soluble tumor necrosis factor receptor 1 (sTNFR1) and sTNFR2 measured in hospitalized patients with COVID-19 were associated with a greater risk of adverse kidney outcomes. Along with clinical variables previously shown to predict adverse kidney events in patients with COVID-19, both sTNFR1 and sTNFR2 are also strong predictors of adverse kidney outcomes.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Humanos , Estudios Prospectivos , COVID-19/complicaciones , Riñón , Biomarcadores , Lesión Renal Aguda/epidemiología , Factores de Riesgo
20.
Transfusion ; 63(5): 918-924, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36965173

RESUMEN

BACKGROUND AND OBJECTIVES: Convalescent COVID-19 plasma (CCP) was developed and used worldwide as a treatment option by supplying passive immunity. Adult studies suggest administering high-titer CCP early in the disease course of patients who are expected to be antibody-negative; however, pediatric experience is limited. We created a multi-institutional registry to characterize pediatric patients (<18 years) who received CCP and to assess the safety of this intervention. METHODS: A REDCap survey was distributed. The registry collected de-identified data including demographic information (age, gender, and underlying conditions), COVID-19 disease features and concurrent treatments, CCP transfusion and safety events, and therapy response. RESULTS: Ninety-five children received CCP: 90 inpatients and 5 outpatients, with a median age of 10.2 years (range 0-17.9). They were predominantly Latino/Hispanic and White. The most frequent underlying medical conditions were chronic respiratory disease, immunosuppression, obesity, and genetic syndromes. CCP was primarily given as a treatment (95%) rather than prophylaxis (5%). Median total plasma dose administered and transfusion rates were 5.0 ml/kg and 2.6 ml/kg/h, respectively. The transfusions were well-tolerated, with 3 in 115 transfusions reporting mild reactions. No serious adverse events were reported. Severity scores decreased significantly 7 days after CCP transfusion or at discharge. Eighty-five patients (94.4%) survived to hospital discharge. All five outpatients survived to 60 days. CONCLUSIONS: CCP was found to be safe and well-tolerated in children. CCP was frequently given concurrently with other COVID-19-directed treatments with improvement in clinical severity scores ≥7 days after CCP, but efficacy could not be evaluated in this study.


Asunto(s)
COVID-19 , Adulto , Humanos , Niño , Recién Nacido , Lactante , Preescolar , Adolescente , COVID-19/terapia , COVID-19/etiología , SARS-CoV-2 , Inmunización Pasiva/efectos adversos , Sueroterapia para COVID-19 , Transfusión Sanguínea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA