Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Elife ; 122023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37467143

RESUMEN

How different intrinsic sequence variations and regulatory modifications of histones combine in nucleosomes remain unclear. To test the importance of histone variants in the organization of chromatin we investigated how histone variants and histone modifications assemble in the Arabidopsis thaliana genome. We showed that a limited number of chromatin states divide euchromatin and heterochromatin into several subdomains. We found that histone variants are as significant as histone modifications in determining the composition of chromatin states. Particularly strong associations were observed between H2A variants and specific combinations of histone modifications. To study the role of H2A variants in organizing chromatin states we determined the role of the chromatin remodeler DECREASED IN DNA METHYLATION (DDM1) in the organization of chromatin states. We showed that the loss of DDM1 prevented the exchange of the histone variant H2A.Z to H2A.W in constitutive heterochromatin, resulting in significant effects on the definition and distribution of chromatin states in and outside of constitutive heterochromatin. We thus propose that dynamic exchanges of histone variants control the organization of histone modifications into chromatin states, acting as molecular landmarks.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cromatina/genética , Histonas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Heterocromatina/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Nucleosomas/genética
2.
Curr Biol ; 33(20): 4367-4380.e9, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37738971

RESUMEN

The mobility of transposable elements (TEs) contributes to evolution of genomes. Their uncontrolled activity causes genomic instability; therefore, expression of TEs is silenced by host genomes. TEs are marked with DNA and H3K9 methylation, which are associated with silencing in flowering plants, animals, and fungi. However, in distantly related groups of eukaryotes, TEs are marked by H3K27me3 deposited by the Polycomb repressive complex 2 (PRC2), an epigenetic mark associated with gene silencing in flowering plants and animals. The direct silencing of TEs by PRC2 has so far only been shown in one species of ciliates. To test if PRC2 silences TEs in a broader range of eukaryotes, we generated mutants with reduced PRC2 activity and analyzed the role of PRC2 in extant species along the lineage of Archaeplastida and in the diatom P. tricornutum. In this diatom and the red alga C. merolae, a greater proportion of TEs than genes were repressed by PRC2, whereas a greater proportion of genes than TEs were repressed by PRC2 in bryophytes. In flowering plants, TEs contained potential cis-elements recognized by transcription factors and associated with neighbor genes as transcriptional units repressed by PRC2. Thus, silencing of TEs by PRC2 is observed not only in Archaeplastida but also in diatoms and ciliates, suggesting that PRC2 deposited H3K27me3 to silence TEs in the last common ancestor of eukaryotes. We hypothesize that during the evolution of Archaeplastida, TE fragments marked with H3K27me3 were selected to shape transcriptional regulation, controlling networks of genes regulated by PRC2.


Asunto(s)
Arabidopsis , Complejo Represivo Polycomb 2 , Animales , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Histonas/genética , Histonas/metabolismo , Elementos Transponibles de ADN/genética , Eucariontes/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas
3.
Curr Opin Cell Biol ; 74: 1-6, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34998094

RESUMEN

Our knowledge of the chromatin landscape and its regulation was originally discovered using yeast and a limited number of animals models. A wealth of studies in model plants now strongly demonstrates the conservation of certain features while illuminating the diversification of others. Here we summarize recent advances that describe specific features of chromatin organization of transcriptional units and specific regulation of heterochromatin in flowering plants. We highlight the importance of transcriptional regulation in plant chromatin organization and the need to investigate a more diverse range of species to understand the chromatin landscape in eukaryotes.


Asunto(s)
Arabidopsis , Eucariontes , Animales , Arabidopsis/genética , Cromatina/genética , Eucariontes/genética , Regulación de la Expresión Génica , Heterocromatina/genética , Plantas/genética
4.
Nat Cell Biol ; 23(4): 391-400, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33833428

RESUMEN

Mobile transposable elements (TEs) not only participate in genome evolution but also threaten genome integrity. In healthy cells, TEs that encode all of the components that are necessary for their mobility are specifically silenced, yet the precise mechanism remains unknown. Here, we characterize the mechanism used by a conserved class of chromatin remodelers that prevent TE mobility. In the Arabidopsis chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1), we identify two conserved binding domains for the histone variant H2A.W, which marks plant heterochromatin. DDM1 is necessary and sufficient for the deposition of H2A.W onto potentially mobile TEs, yet does not act on TE fragments or host protein-coding genes. DDM1-mediated H2A.W deposition changes the properties of chromatin, resulting in the silencing of TEs and, therefore, prevents their mobility. This distinct mechanism provides insights into the interplay between TEs and their host in the contexts of evolution and disease, and potentiates innovative strategies for targeted gene silencing.


Asunto(s)
Proteínas de Arabidopsis/genética , Elementos Transponibles de ADN/genética , Proteínas de Unión al ADN/genética , Evolución Molecular , Histonas/genética , Factores de Transcripción/genética , Arabidopsis/genética , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen , Genoma de Planta/genética , Heterocromatina/genética
5.
Science ; 374(6569): eabi7489, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34762468

RESUMEN

Centromeres attach chromosomes to spindle microtubules during cell division and, despite this conserved role, show paradoxically rapid evolution and are typified by complex repeats. We used long-read sequencing to generate the Col-CEN Arabidopsis thaliana genome assembly that resolves all five centromeres. The centromeres consist of megabase-scale tandemly repeated satellite arrays, which support CENTROMERE SPECIFIC HISTONE H3 (CENH3) occupancy and are densely DNA methylated, with satellite variants private to each chromosome. CENH3 preferentially occupies satellites that show the least amount of divergence and occur in higher-order repeats. The centromeres are invaded by ATHILA retrotransposons, which disrupt genetic and epigenetic organization. Centromeric crossover recombination is suppressed, yet low levels of meiotic DNA double-strand breaks occur that are regulated by DNA methylation. We propose that Arabidopsis centromeres are evolving through cycles of satellite homogenization and retrotransposon-driven diversification.


Asunto(s)
Arabidopsis/genética , Centrómero/genética , Cromosomas de las Plantas/genética , Epigénesis Genética , Arabidopsis/ultraestructura , Centrómero/química , Metilación de ADN , ADN Satélite , Evolución Molecular , Genoma de Planta , Histonas/análisis , Meiosis , Recombinación Genética , Retroelementos , Análisis de Secuencia de ADN
6.
Genome Biol ; 18(1): 94, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28521766

RESUMEN

BACKGROUND: Gene bodies of vertebrates and flowering plants are occupied by the histone variant H3.3 and DNA methylation. The origin and significance of these profiles remain largely unknown. DNA methylation and H3.3 enrichment profiles over gene bodies are correlated and both have a similar dependence on gene transcription levels. This suggests a mechanistic link between H3.3 and gene body methylation. RESULTS: We engineered an H3.3 knockdown in Arabidopsis thaliana and observed transcription reduction that predominantly affects genes responsive to environmental cues. When H3.3 levels are reduced, gene bodies show a loss of DNA methylation correlated with transcription levels. To study the origin of changes in DNA methylation profiles when H3.3 levels are reduced, we examined genome-wide distributions of several histone H3 marks, H2A.Z, and linker histone H1. We report that in the absence of H3.3, H1 distribution increases in gene bodies in a transcription-dependent manner. CONCLUSIONS: We propose that H3.3 prevents recruitment of H1, inhibiting H1's promotion of chromatin folding that restricts access to DNA methyltransferases responsible for gene body methylation. Thus, gene body methylation is likely shaped by H3.3 dynamics in conjunction with transcriptional activity.


Asunto(s)
Arabidopsis/genética , ADN de Plantas/genética , Epigénesis Genética , Genoma de Planta , Histonas/genética , Proteínas de Plantas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/química , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN de Plantas/metabolismo , Histonas/metabolismo , Proteínas de Plantas/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA