Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Cell Biochem ; 124(4): 477-494, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36966454

RESUMEN

The second leading cause of cancer death in women worldwide is breast cancer (BC), and despite significant advances in BC therapies, a significant proportion of patients develop metastasis and disease recurrence. Currently used treatments, like radiotherapy, chemotherapy, and hormone replacement therapy, result in poor responses and high recurrence rates. Alternative therapies are therefore needed for this type of cancer. Cancer patients may benefit from immunotherapy, a novel treatment strategy in cancer treatment. Even though immunotherapy has been successful in many cases, some patients do not respond to the treatment or those who do respond relapse or progress. The purpose of this review is to discuss several different immunotherapy approaches approved for the treatment of BC, as well as different strategies for immunotherapy for the treatment of BC.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Inmunoterapia
2.
Nanotechnology ; 34(21)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36535007

RESUMEN

Cancer has recently increased the death toll worldwide owing to inadequate therapy and decreased drug bioavailability. Long-term and untargeted chemotherapeutic exposure causes toxicity to healthy cells and drug resistance. These challenges necessitate the development of new methods to increase drug efficacy. Nanotechnology is an emerging field in the engineering of new drug delivery platforms. The phytochemical epigallocatechin gallate (EGCG), the main component of green tea extract and its most bioactive component, offers novel approaches to cancer cell eradication. The current review focuses on the nanogold-based carriers containing EGCG, with an emphasis on the chemotherapeutic effects of EGCG in cancer treatment. The nanoscale vehicle may improve the EGCG solubility and bioavailability while overcoming constraints and cellular barriers. This article reviewed the phytochemical EGCG-based gold nanoplatforms and their major anticancer applications, both individually, and in combination therapy in a few cases.


Asunto(s)
Catequina , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Catequina/farmacología , Catequina/uso terapéutico , Disponibilidad Biológica ,
3.
Phytochem Anal ; 34(8): 950-958, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37463671

RESUMEN

OBJECTIVES: Oxidative stress is one of the carcinogenic mechanisms underlying the development of glioblastoma multiforme (GBM), a highly aggressive brain tumor type associated with poor prognosis. Curcumin is known to be an efficient antioxidant, anti-inflammatory, and anticancer compound. However, its poor solubility in water, inappropriate pharmacokinetics, and low bioavailability limit its use as an antitumor drug. We prepared PLGA-based curcumin nanoparticles changed with folic acid and chitosan (curcumin-PLGA-CS-FA) and evaluated its effects on GBM tumor cells' redox status. METHODS: The nanoprecipitation method was used to synthesize CU nanoparticles (CU-NPs). The size, morphology, and stability were characterized by DLS, SEM, and zeta potential analysis, respectively. The CU-NPs' toxic properties were studied by MTT assay and measuring the intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) concentrations. The study was completed by measuring the gene expression levels and activity of superoxide dismutase, catalase, glutaredoxin, and thioredoxin antioxidant enzymes. RESULTS: The size, polydispersity index, and zeta potential of CU-NPs were 77.27 nm, 0.29, and -22.45 mV, respectively. The encapsulation efficiency was approximately 98%. Intracellular ROS and MDA levels decreased after CU-NP treatment. Meanwhile, the CU-NPs increased gene expression and activity of superoxide dismutase, catalase, glutaredoxin, and thioredoxin antioxidant enzymes. CONCLUSION: CU-NPs might be effective in the prevention and treatment of glioblastoma cancer by modulating the antioxidant-oxidant balance.


Asunto(s)
Quitosano , Curcumina , Glioblastoma , Nanopartículas , Curcumina/farmacología , Curcumina/uso terapéutico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/uso terapéutico , Glioblastoma/tratamiento farmacológico , Catalasa , Quitosano/metabolismo , Quitosano/uso terapéutico , Glutarredoxinas/metabolismo , Glutarredoxinas/uso terapéutico , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/uso terapéutico , Ácido Fólico/uso terapéutico , Oxidación-Reducción , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/uso terapéutico , Tiorredoxinas/metabolismo , Tiorredoxinas/uso terapéutico
4.
J Cell Biochem ; 123(11): 1704-1735, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36063530

RESUMEN

Heat shock proteins (HSPs) are a large molecular chaperone family classified by their molecular weights, including HSP27, HSP40, HSP60, HSP70, HSP90, and HSP110. HSPs are likely to have antiapoptotic properties and participate actively in various processes such as tumor cell proliferation, invasion, metastases, and death. In this review, we discuss comprehensively the functions of HSPs associated with the progression of colorectal cancer (CRC) and metastasis and resistance to cancer therapy. Taken together, HSPs have numerous clinical applications as biomarkers for cancer diagnosis and prognosis and potential therapeutic targets for CRC and its related metastases.


Asunto(s)
Neoplasias del Colon , Neoplasias del Recto , Humanos , Proteínas de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Choque Térmico HSP27
5.
Prostate ; 82(3): 289-297, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34855234

RESUMEN

AIM: Mutation occurs in the prostate cell genes, leading to abnormal prostate proliferation and ultimately cancer. Prostate cancer (PC) is one of the most common cancers amongst men, and its prevalence worldwide increases relative to men's age. About 16% of the world's cancers are the result of microbes in the human body. Impaired population balance of symbiosis microbes in the human reproductive system is linked to PC development. DISCUSSION: With the advent of metagenomics science, the genome sequence of the microbiota of the human body has been unveiled. Therefore, it is now possible to identify a higher range of microbiome changes in PC tissue via the Next Generation Technique, which will have positive consequences in personalized medicine. In this review, we intend to question the role of metagenomics studies in the diagnosis and treatment of PC. CONCLUSION: The microbial imbalance in the men's genital tract might have an effect on prostate health. Based on next-generation sequencing-generated data, Proteobacteria, Firmicutes, Actinobacteria, and Bacteriodetes are the nine frequent phyla detected in a PC sample, which might be involved in inducing mutation in the prostate cells that cause cancer.


Asunto(s)
Genitales Masculinos/microbiología , Metagenómica/métodos , Microbiota/genética , Neoplasias de la Próstata , Humanos , Masculino , Medicina de Precisión , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/terapia
6.
Mol Biol Rep ; 49(10): 9863-9875, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35604627

RESUMEN

PURPOSE: Infiltrating into the vital structure of the brain, located in the inaccessible anatomical region, and having molecular heterogeneity, glioblastoma (GBM) -with no doubt- is one of the deadliest cancers. Using the blood and brain barrier (BBB), GBM makes a shield to restrict the reach of chemotherapeutic agents to the tumor site and evolves a unique microenvironment to furnish all the essentials for cancer cells survival to conceal neoplastic cells from immunosurveillance. METHODS: 99 papers which met the criteria of eligibility were included in this review by consensus. The included articles were classified based on their design and level of evidence. RESULTS: Given this characteristic, immunotherapies for a while enjoyed unprecedented attention as a solution for GBM treatment; however, it did not take long before the enthusiasm for their application was muted. It became apparent that cancer cells intelligently find a way to manipulate the anti-tumor responses of agents by attracting immunosuppressive lymphocytes into the brain using the lymphatic vessels. This event makes GBM a good model for immunotherapy resistance. However, the presence of lymphatic vessels has fired up an idea of the adoptive attraction of effector T lymphocytes to the tumor milieu. This was when engineering and cloning technologies, which have given life to one of the recent treatment strategies using artificial T cells named chimeric antigen receptors (CAR) T-cells, came to action to design specific CAR T-cells for the treatment of GBM. CONCLUSION: The present review summarizes the recent advances in CAR T-cell-based treatments in GBM and discusses why this approach could be positioned as a pillar of the next-generation of immunotherapies for this type of brain tumor.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Receptores Quiméricos de Antígenos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Glioblastoma/metabolismo , Humanos , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/metabolismo , Microambiente Tumoral
7.
Mol Biol Rep ; 49(6): 4893-4900, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35429316

RESUMEN

BACKGROUND: The substance P (SP)/neurokinin-1 receptor (NK1R) system, a critical metastatic signaling pathway, can be targeted by substance P antagonists to prevent its cancer-progressive impacts. In the current study, we aimed to investigate the carcinogenic activity of the SP/NK1R system in human SW480 colorectal cancer cells and study the antagonistic impact of aprepitant (AP) by measuring MMP-2 and MMP-9 enzymatic activity. METHODS: Different concentrations of SP, alone or mixed by AP, were utilized to treat SW480 cells to investigate the cells' viability and metastasis by applying Resazurin and Gelatin Zymography methods, respectively. The cells' metastatic response was analyzed by measuring the MMP-2 and MMP-9 in transcriptional and translational levels. Finally, the Scratch assay was carried out to evaluate the cells' metastatic response following the SP/AP treatment. RESULTS: A significant metastatic activity was observed in SW480 cells following incubation with the increasing SP doses by detecting MMP-2/MMP-9 enzyme activity, genes overexpression, and enhanced cell migration. This is while the AP treatment meaningfully diminished all the SP-mediated metastatic effects (p-Value < 0.001). CONCLUSIONS: According to the results, the SP/NKR1 signaling pathway can be considered one of the main metastatic effectors in human colorectal cancer. Therefore, AP might be suggested to be used as the SP antagonist and an efficient anti-metastatic drug.


Asunto(s)
Neoplasias Colorrectales , Receptores de Neuroquinina-1 , Aprepitant/farmacología , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Antagonistas del Receptor de Neuroquinina-1 , Receptores de Neuroquinina-1/genética , Receptores de Neuroquinina-1/metabolismo , Transducción de Señal , Sustancia P/farmacología
8.
Mol Biol Rep ; 49(10): 9307-9314, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35960409

RESUMEN

BACKGROUND: Substance P (SP) has a crucial role in cancer initiation and progression via binding to its specific receptor (NK1R). Various evidence confirmed the overexpression of NK1R and SP in the tissue of multiple cancers, including ovarian cancer. Despite numerous studies, the mechanism of the SP/NK1R system on migration and angiogenesis of ovarian cancer cells has not yet been deciphered. In this study, considering the critical factors in cell migration (MMP-2, MMP-9) and angiogenesis (VEGF, VEGFR), we investigated the possible mechanism of this system in inducing migration and angiogenesis of ovarian cancer cells. METHODS AND RESULTS: First, the resazurin assay was conducted to evaluate the cytotoxic effect of aprepitant (NK1R antagonist) on the viability of A2780 ovarian cancer cells. After that, the impact of this system and aprepitant on the mRNA expression of the factors mentioned above were studied using RT-PCR. Besides, the scratch assay was performed to confirm the effect of the SP/NK-1R system and aprepitant on cell migration. Our results implied that this system induced cell migration and angiogenesis by increasing the mRNA expression of MMP-2, MMP-9, VEGF, and VEGFR. The obtained results from the scratch assay also confirmed the positive effect of this system on cell migration. Meanwhile, the blocking of NK1R by aprepitant suppresses the SP effects on cell migration and angiogenesis. CONCLUSIONS: Overall, the SP/NK1R system plays a vital role in ovarian cancer progression, and the inhibition of NK1Rusing aprepitant could inhibit the spread of ovarian cancer cells through metastasis and angiogenesis.


Asunto(s)
Neoplasias Ováricas , Sustancia P , Aprepitant/farmacología , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Femenino , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , ARN Mensajero , Receptores de Neuroquinina-1/genética , Receptores de Neuroquinina-1/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular , Sustancia P/farmacología , Factor A de Crecimiento Endotelial Vascular/genética
9.
Mol Biol Rep ; 47(6): 4263-4272, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32436041

RESUMEN

Tachykinins such as Substance P (SP) are a group of neuropeptides that are involved in cancer development. Neurokinin-1 receptor (NK-1R) is the main tachykinin receptor mediating the effects of SP, which is overexpressed in human esophageal squamous cell carcinoma (ESCC) and other malignant tissues. However, the effects of SP/NK-1R system on the migration of esophageal cancer cells and angiogenesis is not clear yet. This study seeks to obtain data to address these research gaps. In order to assess the effects of the FDA-approved aprepitant drug, a commercially available NK-1R antagonist, on the viability of KYSE-30 ESCC cells, resazurin assay was performed. The influence of SP/NK-1R system on the migration potential of these cells was examined using scratch assay. The effects of this system on the expression levels of metastatic factors were also examined by RT-PCR and western blot analyses. The half-maximal inhibitory concentration (IC50) value for KYSE-30 cells treated with aprepitant found to be 29.88 µM. Treatment with SP significantly promoted KYSE-30 esophageal cancer cell migration, and aprepitant blocked this effect. In addition, SP significantly induced the expression of matrix metalloproteinase-2 (MMP-2), MMP-9, vascular endothelial growth factor-A (VEGF-A), and VEGF receptor1 (VEGFR1) in the cells, whereas aprepitant inhibited the up-regulation effects caused by SP. SP plays important roles in the development of human esophageal squamous cell carcinoma by promoting cancer cell invasion and enhancing the expression of factors involved in cellular migration and angiogenesis, which can be blocked by the NK-1R antagonist, aprepitant.


Asunto(s)
Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/metabolismo , Metaloproteinasa 2 de la Matriz/biosíntesis , Metaloproteinasa 9 de la Matriz/biosíntesis , Sustancia P/farmacología , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Receptor 2 de Factores de Crecimiento Endotelial Vascular/biosíntesis , Apoptosis/efectos de los fármacos , Aprepitant/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Expresión Génica/efectos de los fármacos , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Antagonistas del Receptor de Neuroquinina-1/farmacología , Receptores de Neuroquinina-1/metabolismo , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
10.
Mol Biol Rep ; 47(3): 2253-2263, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32072401

RESUMEN

One of the most prevalent malignancies is esophageal squamous cell carcinoma (ESCC), which is associated with high morbidity and mortality. Substance P (SP), as one of the peptides released from sensory nerves, causes the enhancement of cellular excitability through the activation of the neurokinin-1 (NK1) receptor in several human tumor cells. Aprepitant, a specific, potent, and long-acting NK1 receptor antagonist, is considered as a novel agent to inhibit proliferation and induce apoptosis in malignant cells. Since the antitumor mechanism of aprepitant in ESCC is not completely understood, we conducted this study and found that aprepitant induced growth inhibition of KYSE-30 cells and arrested cells in the G2/M phase of the cell cycle. Aprepitant also caused apoptotic cell death and inhibited activation of the PI3K/Akt axis and its downstream effectors, including NF-κB in KYSE-30 cells. Besides, quantitative real-time (qRT)-PCR analysis showed a significant down-regulation of NF-κB target genes in KYSE-30 cells, indicating a probable NF-κB-dependent mechanism involved in aprepitant cytotoxicity. Thus, the present study recommends that SP/NK1R system might, therefore, be considered as an emerging and promising therapeutic strategy against ESCC.


Asunto(s)
Carcinoma de Células Escamosas de Esófago/etiología , Carcinoma de Células Escamosas de Esófago/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Neuroquinina-1/metabolismo , Transducción de Señal , Apoptosis/efectos de los fármacos , Compuestos Azo , Caspasas/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Susceptibilidad a Enfermedades , Carcinoma de Células Escamosas de Esófago/patología , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Ésteres del Ácido Sulfúrico
11.
J Cell Physiol ; 234(3): 2241-2251, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30146757

RESUMEN

Curcumin (diferuloylmethane), a yellowish agent extracted from turmeric, is a bioactive compound known for its anti-inflammatory, antiproliferative, antidiabetic, and anticancer activities. Multiple lines of evidence have indicated that curcumin regulates several regulatory proteins in the cellular signal transduction pathway. AMP-activated protein kinase (AMPK) is one of the central regulators of cellular metabolism and energy homeostasis, which is activated in response to increasing cellular adenosine monophosphate/adenosine triphosphate ratio. AMPK plays a critical role in regulating growth and reprogramming metabolism and is linked to several cellular processes including apoptosis and inflammation. Recently, it has been demonstrated that AMPK is a new molecular target affected by curcumin and its derivatives. In this review, we discuss recent findings on the targeting of AMPK signaling by curcumin and the resulting impact on the pathogenesis of proinflammatory diseases. We also highlight the therapeutic value of targeting AMPK by curcumin in the prevention and treatment of proinflammatory diseases, including cancers, atherosclerosis, and diabetes.


Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Curcumina/uso terapéutico , Metabolismo Energético/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/genética , Apoptosis/efectos de los fármacos , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/genética , Humanos , Inflamación/tratamiento farmacológico , Inflamación/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética
12.
J Cell Biochem ; 120(7): 10874-10883, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30719752

RESUMEN

The mammalian target of rapamycin (mTOR) is a large Ser/Thr protein kinase that belongs to the phosphoinositide 3-kinase (PI3K) family and mediates various physiological and pathological processes, especially cell proliferation, protein synthesis, autophagy, and cancer development. The mTOR expression is transient and tightly regulated in normal cells, but it is overactivated in cancer cells. Recently, several studies have indicated that microRNAs (miRNAs) play a critical role in the regulation of mTOR and mTOR-associated processes, some acting as inhibitors and the others as activators. Although it is still in infancy, the strategy of combining both miRNAs and mTOR inhibitors might provide an approach to selectively sensitizing tumor cells to chemotherapy-induced DNA damage and subsequently attenuating the tumor cell growth and apoptosis.

14.
Curr Med Chem ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988156

RESUMEN

Neurokinin receptors are a family of G protein-coupled receptors that were first identified in the central and peripheral nervous systems. However these receptors were later found in other types of cells, therefore, new perspectives concerning their novel roles were described. Mammalian has three neurokinin receptors, among which neurokinin-1 receptors [NK1R] have been indicated to be involved in most, if not all, intracellular functions, primarily the regulation of cell proliferation. By interacting with its potent agonist, substance P [SP], NK1R can engage a variety of signaling pathways and serve as a platform for cells to proliferate by regulating the expression of the cell cycle-related genes. Furthermore, the activity of SP/NK1R is stimulated by various oncogenes, indicating the involvement of this pathway in human cancers. As a result, numerous NK1R antagonists have been investigated in oncology trials, and the promising anti-- cancer effect of these receptors has opened up new possibilities for incorporating these antagonists into cancer treatment. Considering these factors, gaining a deeper understanding of the SP/NK1R pathway could offer significant advantages for cancer patients. The more knowledge we acquire about this pathway, the greater the potential for exploiting it in the development of effective treatment strategies. Here, we present a comprehensive review of the current knowledge pertaining to the biological function of the SP/NK1R, with a specific emphasis on its recently discovered role in the regulation of cell proliferation. Moreover, we provide insights into the impact of this pathway in human cancers, along with an overview of the most significant NK1R antagonists currently utilized in cancer research studies.

15.
Carbohydr Polym ; 340: 122328, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38857995

RESUMEN

This article presents a novel approach to treating prostate cancer using a nanocarrier composed of folic acid (FA), ß-cyclodextrin (ß-CD), and magnetic graphene oxide (MGO) as a theranostic agent. The carrier is designed to improve the solubility and bioavailability of curcumin, a potential therapeutic substance against prostate cancer. Folic acid receptors overexpressed on the surface of solid tumors, including prostate cancer, may facilitate targeted drug delivery to tumor cells while avoiding nonspecific effects on healthy tissues. The anticancer efficacy of Folic acid-curcumin@ß-CD-MGO in vitro was also examined on LNCaP (an androgen-dependent) and PC3 (an androgen-independent) prostate cancer cells. The relaxivity of nanoparticles in MRI images was also investigated as a diagnostic factor. The results showed a concentration-dependent inhibitory effect on cell proliferation, induction of oxidative damage, and apoptotic effects. Also, nanoparticle relaxometry shows that this agent can be used as a negative contrast agent in MRI images. Overall, this study represents a promising theranostic agent to improve the delivery and trace of curcumin and enhance its therapeutic potential in the treatment of prostate cancer.


Asunto(s)
Proliferación Celular , Curcumina , Ácido Fólico , Grafito , Neoplasias de la Próstata , Nanomedicina Teranóstica , beta-Ciclodextrinas , Curcumina/química , Curcumina/farmacología , Masculino , Grafito/química , Grafito/farmacología , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , beta-Ciclodextrinas/química , Nanomedicina Teranóstica/métodos , Ácido Fólico/química , Ácido Fólico/farmacología , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Portadores de Fármacos/química , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Receptores de Folato Anclados a GPI/metabolismo , Liberación de Fármacos , Nanopartículas de Magnetita/química
16.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1377-1404, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37715816

RESUMEN

ZIF-8 (zeolitic imidazolate framework-8) is a potential drug delivery system because of its unique properties, which include a large surface area, a large pore capacity, a large loading capacity, and outstanding stability under physiological conditions. ZIF-8 nanoparticles may be readily functionalized with targeting ligands for the identification and absorption of particular cancer cells, enhancing the efficacy of chemotherapeutic medicines and reducing adverse effects. ZIF-8 is also pH-responsive, allowing medication release in the acidic milieu of cancer cells. Because of its tunable structure, it can be easily functionalized to design cancer-specific targeted medicines. The delivery of ZIF-8 to cancer cells can be facilitated by folic acid-conjugation. Hence, it can bind to overexpressed folate receptors on the surface of cancer cells, which holds the promise of reducing unwanted deliveries. As a result of its importance in cancer treatment, the folate-conjugated ZIF-8 was the major focus of this review.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Neoplasias , Humanos , Ácido Fólico , Estructuras Metalorgánicas/química , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico
17.
Int Immunopharmacol ; 126: 111055, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37992445

RESUMEN

There are increasing incidences and mortality rates for colorectal cancer in the world. It is common for chemotherapy and radiation given to patients with colorectal cancer to cause toxicities that limit their effectiveness and cause cancer cells to become resistant to these treatments. Additional targeted treatments are needed to improve patient's quality of life and outcomes. Immunotherapy has rapidly emerged as an incredibly exciting and promising avenue for cancer treatment in recent years. This innovative approach provides novel options for tackling solid tumors, effectively establishing itself as a new cornerstone in cancer treatment. Specifically, in the realm of colorectal cancer (CRC), there is great promise in developing new drugs that target immune checkpoints, offering a hopeful and potentially transformative solution. While immunotherapy of CRC has made significant advances, there are still obstacles and limitations. CRC patients have a poor response to treatment because of the immune-suppressing function of their tumor microenvironment (TME). In addition to blocking inhibitory immune checkpoints, checkpoint-blocking antibodies may also boost immune responses against tumors. The review summarizes recent advances in immune checkpoint inhibitors (ICIs) for CRC, including CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3.


Asunto(s)
Neoplasias Colorrectales , Calidad de Vida , Humanos , Inmunoterapia , Neoplasias Colorrectales/terapia , Microambiente Tumoral
18.
Iran J Pathol ; 19(1): 1-9, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38864086

RESUMEN

The effectiveness of immunotherapy for most cancer patients remains low, with approximately 10-30% of those treated surviving. Thus, much effort is being put into finding new ways to improve immune checkpoint therapy. Our review concludes that inhibition of proprotein convertase subtilisin/Kexin type 9 (PCSK9), which plays a critical role in regulating cholesterol metabolism, can cause movement of T cells toward tumors, with increased sensitivity to immune checkpoint therapies. We searched PubMed, NCBI, Scopus, and Google Scholar for the published articles without limitations on publication dates. We used the following terms: "PCSK9", "Cancer", "Immune Checkpoint", and "Cancer Prognosis" in the title and/or abstract. Our search initially revealed 600 records on the subject and stored them in the used databases under EndNote X8 management software. A total of 161 articles were selected and through a careful review, 76 were included in our research. We concluded that PCSK9 reduces the number of LDL receptors (LDL-R) on the cell surface, which is linked to its ability to regulate cholesterol levels in the body. Also, we discuss how suppressing PCSK9 leads to the MHC-1 accumulation on the surface of cancer cells, which results in T lymphocyte invasion. Finally, we believe that inhibiting PCSK9 may be an effective strategy for improving cancer immunotherapy.

19.
J Mater Chem B ; 12(4): 872-894, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38193564

RESUMEN

This review delves into the potential of zeolitic imidazolate framework-8 (ZIF-8) nanoparticles in augmenting the efficacy of cancer immunotherapy, with a special focus on the delivery of programmed cell death receptor 1 (PD-1) inhibitors. The multifunctional nature of ZIF-8 nanoparticles as drug carriers is emphasized, with their ability to encapsulate a range of therapeutic agents, including PD-1 inhibitors, and facilitate their targeted delivery to tumor locations. By manipulating the pore size and surface characteristics of ZIF-8 nanoparticles, controlled drug release can be realized. The strategic use of ZIF-8 nanoparticles to deliver PD-1 inhibitors presents a precise and targeted modality for cancer treatment, reducing off-target impacts and enhancing therapeutic effectiveness. This combined strategy addresses the existing challenges and constraints of current immunotherapy techniques, with the ultimate goal of enhancing patient outcomes in cancer therapy.


Asunto(s)
Nanopartículas , Neoplasias , Zeolitas , Humanos , Inhibidores de Puntos de Control Inmunológico , Portadores de Fármacos/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico
20.
Mult Scler Relat Disord ; 82: 105401, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154346

RESUMEN

INTRODUCTION: Multiple sclerosis (MS) is a complex central nervous system disorder, marked by neurodegenerative and inflammatory processes, where overproduction of reactive oxygen species (ROS) is a key factor in demyelination and neurodegeneration. The current study aims to investigate the effect of hesperidin and Quinolinic acid (QA) on ROS and antioxidant levels, and cell viability of OLN-93 cells. METHODS: OLN-93 cell lines were treated with hesperidin and QA. OLN-93 cells were cultured in Dulbecco's modified Eagle's medium under controlled conditions. Cell viability assays were performed using resazurin to assess the toxicity of hesperidin and QA. Additionally, ROS levels were measured using DCFDA, and malondialdehyde (MDA) levels were determined to evaluate oxidative stress. Superoxide dismutase (SOD) activity and cell viability were assessed by trypan blue staining after exposure to hesperidin and QA. RESULTS: The results of the current study showed that co-administration of 8 mM QA with 50, 100, and 200 µM hesperidin significantly reduced both ROS and MDA levels, demonstrating a substantial attenuation in comparison to the elevated ROS and MDA levels induced by 8 mM QA (p-value < 0.01). Furthermore, 8 mM QA + 50, 100, and 200 µM hesperidin significantly increased SOD levels compared with QA alone (p-value < 0.01). In addition, treatment of OLN cells with 8 mM QA + 50, 100, and 200 µM hesperidin led to higher cell viability compared to QA alone (p value <0.0001). CONCLUSION: The current study demonstrated the antioxidant effect of hesperidin on OLN-93 cells suggesting new insights into the clinical application of hesperidin as an effective treatment for patients with MS. Future in vivo studies, focusing on cellular mechanisms are recommended.


Asunto(s)
Antioxidantes , Hesperidina , Humanos , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Hesperidina/farmacología , Ácido Quinolínico/toxicidad , Oligodendroglía/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA