Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 84(7): 1290-1303.e7, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38401542

RESUMEN

Most eukaryotic proteins are degraded by the 26S proteasome after modification with a polyubiquitin chain. Substrates lacking unstructured segments cannot be degraded directly and require prior unfolding by the Cdc48 ATPase (p97 or VCP in mammals) in complex with its ubiquitin-binding partner Ufd1-Npl4 (UN). Here, we use purified yeast components to reconstitute Cdc48-dependent degradation of well-folded model substrates by the proteasome. We show that a minimal system consists of the 26S proteasome, the Cdc48-UN ATPase complex, the proteasome cofactor Rad23, and the Cdc48 cofactors Ubx5 and Shp1. Rad23 and Ubx5 stimulate polyubiquitin binding to the 26S proteasome and the Cdc48-UN complex, respectively, allowing these machines to compete for substrates before and after their unfolding. Shp1 stimulates protein unfolding by the Cdc48-UN complex rather than substrate recruitment. Experiments in yeast cells confirm that many proteins undergo bidirectional substrate shuttling between the 26S proteasome and Cdc48 ATPase before being degraded.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo
2.
Mol Cell ; 82(3): 570-584.e8, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34951965

RESUMEN

The hexameric Cdc48 ATPase (p97 or VCP in mammals) cooperates with its cofactor Ufd1/Npl4 to extract polyubiquitinated proteins from membranes or macromolecular complexes for degradation by the proteasome. Here, we clarify how the Cdc48 complex unfolds its substrates and translocates polypeptides with branchpoints. The Cdc48 complex recognizes primarily polyubiquitin chains rather than the attached substrate. Cdc48 and Ufd1/Npl4 cooperatively bind the polyubiquitin chain, resulting in the unfolding of one ubiquitin molecule (initiator). Next, the ATPase pulls on the initiator ubiquitin and moves all ubiquitin molecules linked to its C terminus through the central pore of the hexameric double ring, causing transient ubiquitin unfolding. When the ATPase reaches the isopeptide bond of the substrate, it can translocate and unfold both N- and C-terminal segments. Ubiquitins linked to the branchpoint of the initiator dissociate from Ufd1/Npl4 and move outside the central pore, resulting in the release of unfolded, polyubiquitinated substrate from Cdc48.


Asunto(s)
Poliubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas Ubiquitinadas/metabolismo , Proteína que Contiene Valosina/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Transporte de Proteínas , Desplegamiento Proteico , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Ubiquitinadas/genética , Ubiquitinación , Proteína que Contiene Valosina/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
3.
Mol Cell ; 70(3): 395-407.e4, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727616

RESUMEN

Telomeres and telomere-binding proteins form complex secondary nucleoprotein structures that are critical for genome integrity but can present serious challenges during telomere DNA replication. It remains unclear how telomere replication stress is resolved during S phase. Here, we show that the BUB3-BUB1 complex, a component in spindle assembly checkpoint, binds to telomeres during S phase and promotes telomere DNA replication. Loss of the BUB3-BUB1 complex results in telomere replication defects, including fragile and shortened telomeres. We also demonstrate that the telomere-binding ability of BUB3 and kinase activity of BUB1 are indispensable to BUB3-BUB1 function at telomeres. TRF2 targets BUB1-BUB3 to telomeres, and BUB1 can directly phosphorylate TRF1 and promote TRF1 recruitment of BLM helicase to overcome replication stress. Our findings have uncovered previously unknown roles for the BUB3-BUB1 complex in S phase and shed light on how proteins from diverse pathways function coordinately to ensure proper telomere replication and maintenance.


Asunto(s)
Proteínas de Ciclo Celular/genética , Replicación del ADN/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas Serina-Treonina Quinasas/genética , Telómero/genética , Línea Celular , Línea Celular Tumoral , ADN Helicasas/genética , Células HEK293 , Células HeLa , Humanos , Puntos de Control de la Fase M del Ciclo Celular/genética , Fase S/genética , Huso Acromático/genética , Proteínas de Unión a Telómeros/genética
4.
Genes Dev ; 26(13): 1473-85, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22751501

RESUMEN

DNA double-strand breaks (DSBs) fuel cancer-driving chromosome translocations. Two related structural maintenance of chromosomes (Smc) complexes, cohesin and Smc5/6, promote DSB repair through sister chromatid homologous recombination (SCR). Here we show that the Smc5/6 subunit Mms21 sumoylates multiple lysines of the cohesin subunit Scc1. Mms21 promotes cohesin-dependent small ubiquitin-like modifier (SUMO) accumulation at laser-induced DNA damage sites in S/G2 human cells. Cells expressing the nonsumoylatable Scc1 mutant (15KR) maintain sister chromatid cohesion during mitosis but are defective in SCR and sensitive to ionizing radiation (IR). Scc1 15KR is recruited to DNA damage sites. Depletion of Wapl, a negative cohesin regulator, rescues SCR defects of Mms21-deficient or Scc1 15KR-expressing cells. Expression of the acetylation-mimicking Smc3 mutant does not bypass the requirement for Mms21 in SCR. We propose that Scc1 sumoylation by Mms21 promotes SCR by antagonizing Wapl at a step after cohesin loading at DSBs and in a way not solely dependent on Smc3 acetylation.


Asunto(s)
Proteínas Portadoras/metabolismo , Cromátides , Ligasas/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Recombinación Genética , Sumoilación , Acetilación , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Línea Celular , ADN/genética , ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN , Humanos , Ligasas/genética , Mitosis , Mutación , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas Proto-Oncogénicas/genética
5.
bioRxiv ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38187576

RESUMEN

Most eukaryotic proteins are degraded by the 26S proteasome after modification with a polyubiquitin chain. Substrates lacking unstructured segments cannot be degraded directly and require prior unfolding by the Cdc48 ATPase (p97 or VCP in mammals) in complex with its ubiquitin-binding partner Ufd1-Npl4 (UN). Here, we use purified yeast components to reconstitute Cdc48-dependent degradation of well-folded model substrates by the proteasome. We show that a minimal system consists of the 26S proteasome, the Cdc48-UN ATPase complex, the proteasome cofactor Rad23, and the Cdc48 cofactors Ubx5 and Shp1. Rad23 and Ubx5 stimulate polyubiquitin binding to the 26S proteasome and the Cdc48-UN complex, respectively, allowing these machines to compete for substrates before and after their unfolding. Shp1 stimulates protein unfolding by the Cdc48-UN complex, rather than substrate recruitment. In vivo experiments confirm that many proteins undergo bidirectional substrate shuttling between the 26S proteasome and Cdc48 ATPase before being degraded.

6.
Cell Discov ; 8(1): 19, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35190543

RESUMEN

The conserved ATPase p97 (Cdc48 in yeast) and adaptors mediate diverse cellular processes through unfolding polyubiquitinated proteins and extracting them from macromolecular assemblies and membranes for disaggregation and degradation. The tandem ATPase domains (D1 and D2) of the p97/Cdc48 hexamer form stacked rings. p97/Cdc48 can unfold substrates by threading them through the central pore. The pore loops critical for substrate unfolding are, however, not well-ordered in substrate-free p97/Cdc48 conformations. How p97/Cdc48 organizes its pore loops for substrate engagement is unclear. Here we show that p97/Cdc48 can form double hexamers (DH) connected through the D2 ring. Cryo-EM structures of p97 DH reveal an ATPase-competent conformation with ordered pore loops. The C-terminal extension (CTE) links neighboring D2s in each hexamer and expands the central pore of the D2 ring. Mutations of Cdc48 CTE abolish substrate unfolding. We propose that the p97/Cdc48 DH captures a potentiated state poised for substrate engagement.

7.
Science ; 365(6452)2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31249135

RESUMEN

The Cdc48 adenosine triphosphatase (ATPase) (p97 or valosin-containing protein in mammals) and its cofactor Ufd1/Npl4 extract polyubiquitinated proteins from membranes or macromolecular complexes for subsequent degradation by the proteasome. How Cdc48 processes its diverse and often well-folded substrates is unclear. Here, we report cryo-electron microscopy structures of the Cdc48 ATPase in complex with Ufd1/Npl4 and polyubiquitinated substrate. The structures show that the Cdc48 complex initiates substrate processing by unfolding a ubiquitin molecule. The unfolded ubiquitin molecule binds to Npl4 and projects its N-terminal segment through both hexameric ATPase rings. Pore loops of the second ring form a staircase that acts as a conveyer belt to move the polypeptide through the central pore. Inducing the unfolding of ubiquitin allows the Cdc48 ATPase complex to process a broad range of substrates.


Asunto(s)
Complejos Multienzimáticos/química , Proteínas de Transporte Nucleocitoplasmático/química , Poliubiquitina/química , Desplegamiento Proteico , Proteínas de Saccharomyces cerevisiae/química , Proteína que Contiene Valosina/química , Proteínas de Transporte Vesicular/química , Microscopía por Crioelectrón , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Ubiquitinación , Proteína que Contiene Valosina/genética
8.
Nat Struct Mol Biol ; 25(7): 616-622, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29967539

RESUMEN

Many polyubiquitinated proteins are extracted from membranes or complexes by the conserved ATPase Cdc48 (in yeast; p97 or VCP in mammals) before proteasomal degradation. Each Cdc48 hexamer contains two stacked ATPase rings (D1 and D2) and six N-terminal (N) domains. Cdc48 binds various cofactors, including the Ufd1-Npl4 heterodimer. Here, we report structures of the Cdc48-Ufd1-Npl4 complex from Chaetomium thermophilum. Npl4 interacts through its UBX-like domain with a Cdc48 N domain, and it uses two Zn2+-finger domains to anchor the enzymatically inactive Mpr1-Pad1 N-terminal (MPN) domain, homologous to domains found in several isopeptidases, to the top of the D1 ATPase ring. The MPN domain of Npl4 is located above Cdc48's central pore, a position similar to the MPN domain from deubiquitinase Rpn11 in the proteasome. Our results indicate that Npl4 is unique among Cdc48 cofactors and suggest a mechanism for binding and translocation of polyubiquitinated substrates into the ATPase.


Asunto(s)
Chaetomium/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteína que Contiene Valosina/química , Proteína que Contiene Valosina/metabolismo , Coenzimas/química , Coenzimas/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Respuesta de Proteína Desplegada , Proteína que Contiene Valosina/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
9.
Elife ; 62017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28072388

RESUMEN

The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1-Bub3 and BubR1-Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1-Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/CCdc20) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1-Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment.


Asunto(s)
Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Células HeLa , Humanos , Fosforilación
10.
Science ; 348(6240): 1260-4, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-26068854

RESUMEN

The spindle checkpoint of the cell division cycle senses kinetochores that are not attached to microtubules and prevents precocious onset of anaphase, which can lead to aneuploidy. The nuclear division cycle 80 complex (Ndc80C) is a major microtubule receptor at the kinetochore. Ndc80C also mediates the kinetochore recruitment of checkpoint proteins. We found that the checkpoint protein kinase monopolar spindle 1 (Mps1) directly bound to Ndc80C through two independent interactions. Both interactions involved the microtubule-binding surfaces of Ndc80C and were directly inhibited in the presence of microtubules. Elimination of one such interaction in human cells caused checkpoint defects expected from a failure to detect unattached kinetochores. Competition between Mps1 and microtubules for Ndc80C binding thus constitutes a direct mechanism for the detection of unattached kinetochores.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Secuencia de Aminoácidos , Unión Competitiva , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto , Células HeLa , Humanos , Datos de Secuencia Molecular , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética
11.
Dev Cell ; 28(3): 223-4, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24525184

RESUMEN

In this issue of Developmental Cell, two complementary studies by Jiang et al. (2014) and Toledo et al. (2014) identify BuGZ as an interacting protein of the kinetochore adaptor Bub3 and show that it promotes the stabilization and kinetochore loading of Bub3, chromosome alignment, and mitotic progression.


Asunto(s)
Proteínas de Ciclo Celular/química , Cromosomas Humanos/genética , Glioblastoma/patología , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Huso Acromático/fisiología , Dedos de Zinc/genética , Animales , Humanos , Proteínas de Unión a Poli-ADP-Ribosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA