Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(22): 15209-15218, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38775661

RESUMEN

Solid electrolyte interphases (SEIs) are sought to protect high-capacity anodes, which suffer from severe volume changes and fast degradations. The previously proposed effective SEIs were of high strength yet abhesive, inducing a yolk-shell structure to decouple the rigid SEI from the anode for accommodating the volume change. Ambivalently, the interfacial void-evolved electro-chemo-mechanical vulnerabilities become inherent defects. Here, we establish a new rationale for SEIs that resilience and adhesivity are both requirements and pioneer a design of a resilient yet adhesive SEI (re-ad-SEI), integrated into a conjugated surface bilayer structure. The re-ad-SEI and its protected particles exhibit excellent stability almost free from the thickening of SEI and the particle pulverization during cycling. More promisingly, the dynamically bonded intact SEI-anode interfaces enable a high-efficiency ion transport and provide a unique mechanical confinement effect for structural integrity of anodes. The high Coulombic efficiency (>99.8%), excellent cycling stability (500 cycles), and superior rate performance have been demonstrated in microsized Si-based anodes.

2.
Langmuir ; 40(15): 8271-8283, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38557053

RESUMEN

Surface modification of lubricating coatings on biomedical devices is a pivotal strategy to improve the overall performance and clinical efficacy, significantly reducing friction between devices and human tissues and mitigating tissue damage during intervention and long-term implantation. Recently, various hydrophilic polymeric materials have been used for achieving surface functionalization, endowing the biomedical device with excellent superlubrication performance. N-Vinylpyrrolidone (NVP) and 2-methacryloyloxyethyl phosphorylcholine (MPC) are two typical representatives of nonionic and zwitterionic materials. However, there is still a research gap in a comparative study of the lubrication mechanisms and properties between them. In this study, a bioinspired and dopamine-assisted codeposition technique was used to fabricate biomimetic hydrophilic coatings, including P(DMA-NVP) and P(DMA-MPC), on polyurethane. To achieve a thorough comparative analysis of the self-adhesive coating performance, 3 M ratios of the copolymers were synthesized and comprehensive material evaluations were conducted. Additionally, surface morphology, hydrophilicity, and lubrication at both the microscale and macroscale were performed. It was found that both hydrophilic coatings exhibited good stability. The P(DMA-MPC) coating, due to the ability to attract and bind a large number of water molecules, demonstrated superior lubrication effects compared to the P(DMA-NVP) coating. The study provides an in-depth understanding of the lubrication behavior of the self-adhesive coatings to enhance the functionality and application in biomedical engineering.


Asunto(s)
Polímeros , Cementos de Resina , Humanos , Lubrificación , Agua
3.
ACS Appl Bio Mater ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954747

RESUMEN

In the realm of clinical applications, the concern surrounding biomedical device-related infections (BDI) is paramount. To mitigate the risk associated with BDI, enhancing surface characteristics such as lubrication and antibacterial efficacy is considered as a strategic approach. This study delineated the synthesis of a multifunctional copolymer, embodying self-adhesive, lubricating, and antibacterial properties, achieved through free radical polymerization and a carbodiimide coupling reaction. The copolymer was adeptly modified on the surface of stainless steel 316L (SS316L) substrates by employing a facile dip-coating technique. Comprehensive characterizations were performed by using an array of analytical techniques including Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, optical interferometry, scanning electron microscopy, and atomic force microscopy. Nanoscale tribological assessments revealed a notable reduction in the value of the friction coefficient of the copolymer-coated SS316L substrates compared to bare SS316L samples. The coating demonstrated exceptional resistance to protein adsorption, as evidenced in protein contamination models employing bovine serum albumin and fibrinogen. The bactericidal efficacy of the copolymer-modified surfaces was significantly improved against pathogenic strains such as Staphylococcus aureus and Escherichia coli. Additionally, in vitro evaluations of blood compatibility and cellular compatibility underscored the remarkable anticoagulant performance and biocompatibility. Collectively, these findings indicated that the developed copolymer coating represented a promising candidate, with its facile modification approach, for augmenting lubrication and antifouling properties in the field of biomedical implant applications.

4.
ACS Biomater Sci Eng ; 10(6): 3655-3672, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38743527

RESUMEN

Slippery liquid-infused porous surface (SLIPS), inspired by the Nepenthes pitcher plant, exhibits excellent performances as it has a smooth surface and extremely low contact angle hysteresis. Biomimetic SLIPS attracts considerable attention from the researchers for different applications in self-cleaning, anti-icing, anticorrosion, antibacteria, antithrombotic, and other fields. Hence, SLIPS has shown promise for applications across both the biomedical and industrial fields. However, the manufacturing of SLIPS with strong bonding ability to different substrates and powerful liquid locking performance remains highly challenging. In this review, a comprehensive overview of research on SLIPS for medical applications is conducted, and the design parameters and common fabrication methods of such surfaces are summarized. The discussion extends to the mechanisms of interaction between microbes, cells, proteins, and the liquid layer, highlighting the typical antifouling applications of SLIPS. Furthermore, it identifies the potential of utilizing the controllable factors provided by SLIPS to develop innovative materials and devices aimed at enhancing human health.


Asunto(s)
Propiedades de Superficie , Porosidad , Humanos , Materiales Biocompatibles Revestidos/química
5.
Artículo en Inglés | MEDLINE | ID: mdl-38936813

RESUMEN

The unsatisfactory oxygen reduction reaction (ORR) kinetics caused by the inherent lean-oxygen marine environment brings low power density for metal-dissolved oxygen seawater batteries (SWBs). In this study, we propose a seawater/electrode interfacial engineering strategy by constructing a hydrophobic coating to realize enhanced mass transfer of dissolved oxygen for the fully immersed cathode of SWBs. Accumulation of dissolved oxygen from seawater to the catalyst is particularly beneficial for improving the ORR performance under lean-oxygen conditions. As a result, SWB assembled with a hydrophobic cathode achieved a power density of up to 2.32 mW cm-2 and sustained discharge at 1.3 V for 250 h. Remarkably, even in environments with an oxygen concentration of 4 mg L-1, it can operate at a voltage approximately 100 mV higher than that of an unmodified SWB. The introduction of a hydrophobic interface enhances the discharge voltage and power of SWBs by improving interfacial oxygen mass transfer, providing new insights into improving the underwater ORR performance for practical SWBs.

6.
Adv Mater ; 35(31): e2212186, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36806260

RESUMEN

Hard carbons, an important category of amorphous carbons, are non-graphitizable and are widely accepted as the most promising anode materials for emerging sodium-ion batteries (SIBs), because of their changeable low-potential charge/discharge plateaus. However, their microstructures are not fixed and are difficult to accurately demonstrate as graphites do. The successful use of hard carbons in SIBs revives the interest to clearly picture their complicated microstructures that are in close relevance to sodium storage. In this review, the past definitions and structural models of hard carbons are revisited first, and a renewed understanding of their sodium storage is presented. Three critical structural features are highlighted for hard carbons, namely crystallites, defects, and nanopores, which are directly responsible for the presence of the low-potential plateaus and their reversible extension. The impact of these structural features upon the sodium storage is then deeply discussed and sieving carbons is finally proposed as an ideal configuration of carbon anode for superhigh sodium storage. This review is expected to offer a clear picture of hard carbons, and help realize a truly rational design of high-capacity carbon anodes, driving the industrialization of SIBs, and more promisingly open up a window for exploring their possible new uses.

7.
Phys Med Biol ; 67(24)2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36541524

RESUMEN

Objective.Unrolled algorithms are a promising approach for reconstruction of CT images in challenging scenarios, such as low-dose, sparse-view and limited-angle imaging. In an unrolled algorithm, a fixed number of iterations of a reconstruction method are unrolled into multiple layers of a neural network, and interspersed with trainable layers. The entire network is then trained end-to-end in a supervised fashion, to learn an appropriate regularizer from training data. In this paper we propose a novel unrolled algorithm, and compare its performance with several other approaches on sparse-view and limited-angle CT.Approach.The proposed algorithm is inspired by the superiorization methodology, an optimization heuristic in which iterates of a feasibility-seeking method are perturbed between iterations, typically using descent directions of a model-based penalty function. Our algorithm instead uses a modified U-net architecture to introduce the perturbations, allowing a network to learn beneficial perturbations to the image at various stages of the reconstruction, based on the training data.Main Results.In several numerical experiments modeling sparse-view and limited angle CT scenarios, the algorithm provides excellent results. In particular, it outperforms several competing unrolled methods in limited-angle scenarios, while providing comparable or better performance on sparse-view scenarios.Significance.This work represents a first step towards exploiting the power of deep learning within the superiorization methodology. Additionally, it studies the effect of network architecture on the performance of unrolled methods, as well as the effectiveness of the unrolled approach on both limited-angle CT, where previous studies have primarily focused on the sparse-view and low-dose cases.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Rayos X , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Redes Neurales de la Computación , Heurística , Fantasmas de Imagen
8.
Natl Sci Rev ; 9(8): nwac084, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35992230

RESUMEN

Non-graphitic carbons are promising anode candidates for sodium-ion batteries, while their variable and complicated microstructure severely limits the rational design of high-energy carbon anodes that could accelerate the commercialization of sodium-ion batteries, as is the case for graphite in lithium-ion batteries. Here, we propose sieving carbons, featuring highly tunable nanopores with tightened pore entrances, as high-energy anodes with extensible and reversible low-potential plateaus (<0.1 V). It is shown that the tightened pore entrance blocks the formation of the solid electrolyte interphase inside the nanopores and enables sodium clustering to produce the plateau. Theoretical and spectroscopic studies also show that creating a larger area of sodiophilic pore surface leads to an almost linearly increased number of sodium clusters, and controlling the pore body diameter guarantees the reversibility of sodium cluster formation, producing a sieving carbon anode with a record-high plateau capacity of 400 mAh g-1. More excitingly, this approach to preparing sieving carbons has the potential to be scalable for modifying different commercial porous carbons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA