RESUMEN
Surface reconstruction determines the fate of catalytic sites on the near-surface during the oxygen evolution reaction. However, deciphering the conversion mechanism of various intermediate-states during surface reconstruction remains a challenge. Herein, we employed an optical imaging technique to draw the landscape of dynamic surface reconstruction on individual Co3O4 nanoparticles. By regulating the surface states of Co3O4 nanoparticles, we explored dynamic growth of the CoOx(OH)y sublayer on single Co3O4 nanoparticles and directly identified the conversion between two dynamics. Rich oxygen vacancies induced more active sites on the surface and prolonged surface reconstruction, which enhanced electrochemical redox and oxygen evolution. These results were further verified by in situ electrochemical extinction spectroscopy of single Co3O4 nanoparticles. We elucidate the heterogeneous evolution of surface reconstruction on individual Co3O4 nanoparticles and present a unique perspective to understand the fate of catalytic species on the nanosurface, which is of enduring significance for investigating the heterogeneity of multielectron-transfer events.
RESUMEN
Structural variations have emerged as an important driving force for genome evolution and phenotypic variation in various organisms, yet their contributions to genetic diversity and adaptation in domesticated animals remain largely unknown. Here we constructed a pangenome based on 250 sequenced individuals from 32 pig breeds in Eurasia and systematically characterized coding sequence presence/absence variations (PAVs) within pigs. We identified 308.3-Mb nonreference sequences and 3438 novel genes absent from the current reference genome. Gene PAV analysis showed that 16.8% of the genes in the pangene catalog undergo PAV. A number of newly identified dispensable genes showed close associations with adaptation. For instance, several novel swine leukocyte antigen (SLA) genes discovered in nonreference sequences potentially participate in immune responses to productive and respiratory syndrome virus (PRRSV) infection. We delineated previously unidentified features of the pig mobilome that contained 490,480 transposable element insertion polymorphisms (TIPs) resulting from recent mobilization of 970 TE families, and investigated their population dynamics along with influences on population differentiation and gene expression. In addition, several candidate adaptive TE insertions were detected to be co-opted into genes responsible for responses to hypoxia, skeletal development, regulation of heart contraction, and neuronal cell development, likely contributing to local adaptation of Tibetan wild boars. These findings enhance our understanding on hidden layers of the genetic diversity in pigs and provide novel insights into the role of SVs in the evolutionary adaptation of mammals.
Asunto(s)
Cruzamiento , Genoma , Humanos , Animales , Porcinos , Variación Genética , MamíferosRESUMEN
DExD/H-box helicases are crucial regulators of RNA metabolism and antiviral innate immune responses; however, their role in bacteria-induced inflammation remains unclear. Here, we report that DDX5 interacts with METTL3 and METTL14 to form an m6A writing complex, which adds N6-methyladenosine to transcripts of toll-like receptor (TLR) 2 and TLR4, promoting their decay via YTHDF2-mediated RNA degradation, resulting in reduced expression of TLR2/4. Upon bacterial infection, DDX5 is recruited to Hrd1 at the endoplasmic reticulum in an MyD88-dependent manner and is degraded by the ubiquitin-proteasome pathway. This process disrupts the DDX5 m6A writing complex and halts m6A modification as well as degradation of TLR2/4 mRNAs, thereby promoting the expression of TLR2 and TLR4 and downstream NF-κB activation. The role of DDX5 in regulating inflammation is also validated in vivo, as DDX5- and METTL3-KO mice exhibit enhanced expression of inflammatory cytokines. Our findings show that DDX5 acts as a molecular switch to regulate inflammation during bacterial infection and shed light on mechanisms of quiescent inflammation during homeostasis.
Asunto(s)
Adenina , Infecciones Bacterianas , Receptor Toll-Like 2 , Animales , Ratones , Adenina/análogos & derivados , Inflamación/genética , Metiltransferasas/genética , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genéticaRESUMEN
The genetic diversities of subpopulations drive the evolution of pathogens and affect their ability to infect hosts and cause diseases. However, most studies to date have focused on the identification and characterization of adaptive mutations in single colonies, which do not accurately reflect the phenotypes of an entire population. Here, to identify the composition of variant subpopulations within a pathogen population, we developed a streamlined approach that combines high-throughput sequencing of the entire population cells with genotyping of single colonies. Using this method, we reconstructed a detailed quorum-sensing (QS) evolutionary trajectory in Pseudomonas aeruginosa. Our results revealed a new adaptive mutation in the gacS gene, which codes for a histidine kinase sensor of a two-component system (TCS), during QS evolution. This mutation reduced QS activity, allowing the variant to sweep throughout the whole population, while still being vulnerable to invasion by the emerging QS master regulator LasR-null mutants. By tracking the evolutionary trajectory, we found that mutations in gacS facilitated QS-rewiring in the LasR-null mutant. This rapid QS revertant caused by inactive GacS was found to be associated with the promotion of ribosome biogenesis and accompanied by a trade-off of reduced bacterial virulence on host cells. In conclusion, our findings highlight the crucial role of the global regulator GacS in modulating the progression of QS evolution and the virulence of the pathogen population.
Asunto(s)
Proteínas Bacterianas , Evolución Molecular , Mutación , Pseudomonas aeruginosa , Percepción de Quorum , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Percepción de Quorum/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia/genética , Transactivadores/genética , Transactivadores/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Regulación Bacteriana de la Expresión Génica , Histidina Quinasa/genética , Histidina Quinasa/metabolismoRESUMEN
Human papillomavirus (HPV) causes 5% of all cancers and frequently integrates into host chromosomes. The HPV oncoproteins E6 and E7 are necessary but insufficient for cancer formation, indicating that additional secondary genetic events are required. Here, we investigate potential oncogenic impacts of virus integration. Analysis of 105 HPV-positive oropharyngeal cancers by whole-genome sequencing detects virus integration in 77%, revealing five statistically significant sites of recurrent integration near genes that regulate epithelial stem cell maintenance (i.e., SOX2, TP63, FGFR, MYC) and immune evasion (i.e., CD274). Genomic copy number hyperamplification is enriched 16-fold near HPV integrants, and the extent of focal host genomic instability increases with their local density. The frequency of genes expressed at extreme outlier levels is increased 86-fold within ±150 kb of integrants. Across 95% of tumors with integration, host gene transcription is disrupted via intragenic integrants, chimeric transcription, outlier expression, gene breaking, and/or de novo expression of noncoding or imprinted genes. We conclude that virus integration can contribute to carcinogenesis in a large majority of HPV-positive oropharyngeal cancers by inducing extensive disruption of host genome structure and gene expression.
Asunto(s)
Alphapapillomavirus , Proteínas Oncogénicas Virales , Neoplasias Orofaríngeas , Alphapapillomavirus/metabolismo , Carcinogénesis , Humanos , Proteínas Oncogénicas Virales/genética , Neoplasias Orofaríngeas/genética , Papillomaviridae/genética , Papillomaviridae/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Integración Viral/genéticaRESUMEN
Complement receptor type 2 (CR2) is an important membrane molecule expressed on B cells and follicular dendritic cells. Human CR2 has been shown to play a critical role in bridging the innate complement-mediated immune response with adaptive immunity by binding complement component 3d (C3d). However, the chicken CR2 (chCR2) gene has not been identified or characterized. In this study, unannotated genes that contain short consensus repeat (SCR) domains were analyzed based on RNA sequencing data for chicken bursa lymphocytes, and a gene with >80% homology to CR2 from other bird species was obtained. The gene consisted of 370 aa and was much smaller than the human CR2 gene because 10-11 SCRs were missing. The gene was then demonstrated as a chCR2 that exhibited high binding activity to chicken C3d. Further studies revealed that chCR2 interacts with chicken C3d through a binding site in its SCR1-4 region. An anti-chCR2 mAb that recognizes the epitope 258CKEISCVFPEVQ269 was prepared. Based on the anti-chCR2 mAb, the flow cytometry and confocal laser scanning microscopy experiments confirmed that chCR2 was expressed on the surface of bursal B lymphocytes and DT40 cells. Immunohistochemistry and quantitative PCR analyses further indicated that chCR2 is predominantly expressed in the spleen, bursa, and thymus, as well as in PBLs. Additionally, the expression of chCR2 varied according to the infectious bursal disease virus infection status. Collectively, this study identified and characterized chCR2 as a distinct immunological marker in chicken B cells.
Asunto(s)
Pollos , Complemento C3d , Animales , Humanos , Complemento C3d/metabolismo , Receptores de Complemento 3d/metabolismo , Sitios de Unión , Factores Inmunológicos , Receptores de ComplementoRESUMEN
Prostate cancer (PCa) is threatening the health of millions of people, the pathological mechanism of prostate cancer has not been fully elaborated, and needs to be further explored. Here, we found that the expression of DUSP26 is dramatically suppressed, and a positive connection of its expression with PCa prognosis was also observed. In vitro, overexpression of DUSP26 significantly inhibited the proliferative, migrative, and invasive capacities of PC3 cells, DUSP26 silencing presented opposite results. Tumor formation experiments in subcutaneous nude mice demonstrated that DUSP26 overexpression could significantly suppress PC3 growth in vivo. Moreover, the mechanism of DUSP26 gene and PCa was discovered by RNA-Seq analysis. We found that DUSP26 significantly inhibited MAPK signaling pathway activation, and further experiments displayed that DUSP26 could impair TAK1, p38, and JNK phosphorylation. Interestingly, treatment with the TAK1 inhibitor (iTAK1) attenuated the effect of DUSP26 on PC3 cells. Together, these results suggested that DUSP26 may serve as a novel therapeutic target for PC3 cell type PCa, the underlying mechanism may be through TAK1-JNK/p38 signaling.
Asunto(s)
Movimiento Celular , Proliferación Celular , Fosfatasas de Especificidad Dual , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Fosfatasas de la Proteína Quinasa Activada por Mitógenos , Neoplasias de la Próstata , Humanos , Masculino , Proliferación Celular/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Animales , Movimiento Celular/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Ratones , Invasividad Neoplásica , Línea Celular Tumoral , Sistema de Señalización de MAP Quinasas/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Células PC-3 , Ratones Endogámicos BALB CRESUMEN
SignificanceThin transparent semiconductors of two-dimensional materials are attractive for the practical applications in next-generation nanoelectronic and optoelectronic devices. Probing the electron states and electrical switching mechanisms of a molybdenum disulphide monolayer with atomic-scale thickness (6.5 Å) allows us to unlock the full technological potential of this nanomaterial. We introduced a plasmonic phase imaging method to uncover the underlying mechanism and detailed switching dynamics of an electrical-state switching event. This dramatic phase change can be attributed to the reversible switching of classical electromagnetic coupling and quantum coupling effects interplaying between a single metal nanoparticle and molybdenum disulphide monolayer, and the transient intermediate states during the switching event can be directly imaged by a plasmonic technique.
RESUMEN
Liquid hydrogen carriers have garnered considerable interest in long-distance and large-scale hydrogen storage owing to their exceptional hydrogen storage density, safety, and compatibility. Nonetheless, their practical application is hampered by the low hydrogen production rate and high cost, stemming from poor thermal utilization and heavy reliance on noble metals in solar bulk dehydrogenation platforms. To conquer these challenges, we devise an economical all-in-one architecture comprising the photothermal catalytic termination-vacant MXene and a highly insulated melamine substrate. This design floats on the air-reactant interface to efficiently drive solar interfacial dehydrogenation. The melamine enables interfacial heat localization to improve the thermal utilization, providing a high reaction temperature. Meanwhile, the MXene with termination vacancies exposes rich active sites for formic acid dehydrogenation, and simultaneously high performance and cost-effectiveness can be realized. This work offers fresh perspectives on the design and application of photothermal catalytic MXene, broadening the prospects for hydrogen storage using liquid hydrogen carriers.
RESUMEN
The Wnt/ß-catenin signaling pathway plays essential roles in embryonic development and adult tissue homeostasis. Axin is a concentration-limiting factor responsible for the formation of the ß-catenin destruction complex. Wnt signaling itself promotes the degradation of Axin. However, the underlying molecular mechanism and biological relevance of this targeting of Axin have not been elucidated. Here, we identify SIAH1/2 (SIAH) as the E3 ligase mediating Wnt-induced Axin degradation. SIAH proteins promote the ubiquitination and proteasomal degradation of Axin through interacting with a VxP motif in the GSK3-binding domain of Axin, and this function of SIAH is counteracted by GSK3 binding to Axin. Structural analysis reveals that the Axin segment responsible for SIAH binding is also involved in GSK3 binding but adopts distinct conformations in Axin/SIAH and Axin/GSK3 complexes. Knockout of SIAH1 blocks Wnt-induced Axin ubiquitination and attenuates Wnt-induced ß-catenin stabilization. Our data suggest that Wnt-induced dissociation of the Axin/GSK3 complex allows SIAH to interact with Axin not associated with GSK3 and promote its degradation and that SIAH-mediated Axin degradation represents an important feed-forward mechanism to achieve sustained Wnt/ß-catenin signaling.
Asunto(s)
Proteína Axina/metabolismo , Proteínas Nucleares/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Proteína Axina/química , Proteína Axina/genética , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Osteosarcoma/genética , Osteosarcoma/metabolismo , Conformación Proteica , Proteolisis , Homología de Secuencia , Células Tumorales Cultivadas , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismoRESUMEN
Clear cell renal cell carcinoma (ccRCC) is a commonly occurring and highly aggressive urological malignancy characterized by a significant mortality rate. Current therapeutic options for advanced ccRCC are limited, necessitating the discovery of novel biomarkers and therapeutic targets. Carboxypeptidase A4 (CPA4) is a zinc-containing metallocarboxypeptidase with implications in various cancer types, but its role in ccRCC remains unexplored. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized in order to investigate the differential expression patterns of CPA4. The expression of CPA4 in ccRCC patients was further verified using immunohistochemical (IHC) examination of 24 clinical specimens. A network of protein-protein interactions (PPI) was established, incorporating CPA4 and its genes that were expressed differentially. Functional enrichment analyses were conducted to anticipate the contribution of CPA4 in the development of ccRCC. To validate our earlier study, we conducted real-time PCR and cell functional tests on ccRCC cell lines. Our findings revealed that CPA4 is overexpressed in ccRCC, and the higher the expression of CPA4, the worse the clinical outcomes such as TNM stage, pathological stage, histological grade, etc. Moreover, patients with high CPA4 expression had worse overall survival, disease-specific survival and progress-free interval than patients with low expression. The PPI network analysis highlighted potential interactions contributing to ccRCC progression. Functional enrichment analysis indicated the involvement of CPA4 in the regulation of key pathways associated with ccRCC development. Additionally, immune infiltration analysis suggested a potential link between CPA4 expression and immune response in the tumour microenvironment. Finally, cell functional studies in ccRCC cell lines shed light on the molecular mechanisms underlying the role of CPA4 in promoting ccRCC formation. Overall, our study unveils CPA4 as a promising biomarker with prognostic potential in ccRCC. The identified interactions and pathways provide valuable insights into its implications in ccRCC development and offer a foundation for future research on targeted therapies. Further investigation of CPA4's involvement in immune responses may contribute to the development of immunotherapeutic strategies for ccRCC treatment.
Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Biomarcadores , Neoplasias Renales/genética , Proliferación Celular/genética , Microambiente Tumoral/genéticaRESUMEN
Plasma levels of oncofetal chondroitin sulfate (ofCS)-modified CD44 have emerged as a promising biomarker for multi-cancer detection. Here, we explored its potential to predict the survival of patients with lung cancer. A prospective observational cohort was conducted involving 274 newly diagnosed patients with lung cancer at the Sun Yat-sen University Cancer Center from 2013 to 2015. The plasma levels of ofCS-modified CD44 were measured, and Cox regression analysis was performed to assess the association between plasma-modified CD44 levels and overall survival (OS) as well as other prognostic outcomes. Prognostic nomograms were constructed based on plasma ofCS-modified CD44 levels to predict survival outcomes for patients with lung cancer. Patients with high expression ofCS-modified CD44 exhibited significantly worse outcomes in terms of OS (HR = 1.61, 95%CI = 1.13-2.29, p = 0.009) and progression-free survival (PFS). These findings were consistent across various analyses. The concordance index of the prognostic nomogram for predicting OS in both the training set and validation set were 0.723 and 0.737, respectively. Additionally, time-dependent receiver operating characteristic (ROC) curves showed that the nomogram could serve as a useful tool for predicting OS in patients with lung cancer. Plasma ofCS-modified CD44 may serve as an independent prognosis marker for patients with lung cancer. Further validation of its predictive value could enhance prognostic assessment and guide personalized treatment strategies for patients with lung cancer.
RESUMEN
ZFYVE21 is an ancient, endosome-associated protein that is highly expressed in endothelial cells (ECs) but whose function(s) in vivo are undefined. Here, we identified ZFYVE21 as an essential regulator of vascular barrier function in the aging kidney. ZFYVE21 levels significantly decline in ECs in aged human and mouse kidneys. To investigate attendant effects, we generated EC-specific Zfyve21-/- reporter mice. These knockout mice developed accelerated aging phenotypes including reduced endothelial nitric oxide (ENOS) activity, failure to thrive, and kidney insufficiency. Kidneys from Zfyve21 EC-/- mice showed interstitial edema and glomerular EC injury. ZFYVE21-mediated phenotypes were not programmed developmentally as loss of ZFYVE21 in ECs during adulthood phenocopied its loss prenatally, and a nitric oxide donor normalized kidney function in adult hosts. Using live cell imaging and human kidney organ cultures, we found that in a GTPase Rab5- and protein kinase Akt-dependent manner, ZFYVE21 reduced vesicular levels of inhibitory caveolin-1 and promoted transfer of Golgi-derived ENOS to a perinuclear Rab5+ vesicular population to functionally sustain ENOS activity. Thus, our work defines a ZFYVE21- mediated trafficking mechanism sustaining ENOS activity and demonstrates the relevance of this pathway for maintaining kidney function with aging.
Asunto(s)
Envejecimiento , Caveolina 1 , Células Endoteliales , Riñón , Óxido Nítrico Sintasa de Tipo III , Óxido Nítrico , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Envejecimiento/metabolismo , Envejecimiento/fisiología , Caveolina 1/metabolismo , Caveolina 1/genética , Células Endoteliales/metabolismo , Aparato de Golgi/metabolismo , Riñón/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Fenotipo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Proteínas de Unión al GTP rab5/genética , Insuficiencia Renal/metabolismo , Insuficiencia Renal/fisiopatología , Insuficiencia Renal/genéticaRESUMEN
The homeostatic link between oxidative stress and autophagy plays an important role in cellular responses to a wide variety of physiological and pathological conditions. However, the regulatory pathway and outcomes remain incompletely understood. Here, we show that reactive oxygen species (ROS) function as signaling molecules that regulate autophagy through ataxia-telangiectasia mutated (ATM) and cell cycle checkpoint kinase 2 (CHK2), a DNA damage response (DDR) pathway activated during metabolic and hypoxic stress. We report that CHK2 binds to and phosphorylates Beclin 1 at Ser90/Ser93, thereby impairing Beclin 1-Bcl-2 autophagy-regulatory complex formation in a ROS-dependent fashion. We further demonstrate that CHK2-mediated autophagy has an unexpected role in reducing ROS levels via the removal of damaged mitochondria, which is required for cell survival under stress conditions. Finally, CHK2-/- mice display aggravated infarct phenotypes and reduced Beclin 1 p-Ser90/Ser93 in a cerebral stroke model, suggesting an in vivo role of CHK2-induced autophagy in cell survival. Taken together, these results indicate that the ROS-ATM-CHK2-Beclin 1-autophagy axis serves as a physiological adaptation pathway that protects cells exposed to pathological conditions from stress-induced tissue damage.
Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Beclina-1/metabolismo , Quinasa de Punto de Control 2/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Autofagia , Línea Celular , Modelos Animales de Enfermedad , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Ratones , Estrés Oxidativo , FosforilaciónRESUMEN
Biomimetic cytochrome P450 for chemical activation of environmental carcinogens is an efficient in vitro model for evaluating their mutagenicity and ultimately acquiring the metabolites that cannot be easily accessed by conventional routes of organic synthesis. Different kinds of mutagen derived from polyaromatic hydrocarbons (PAHs) by metalloporphyrin/oxidant model systems have been reported, but the underlying molecular mechanisms are poorly understood. Herein, we have for the first time demonstrated an effective surface-enhanced Raman scattering (SERS) protocol to study the dynamics and biomimetic metabolic behaviors of pyrene (Pyr) in the presence of various oxygen donors. Quantitative information on the relative concentration of Pyr and its metabolites in the biomimetic system can be extracted from the SERS spectra. On the basis of our results, we conclude that the oxidative metabolism of Pyr is highly influenced by the types and concentrations of oxygen donors, leading to the formation of 1-hydroxypyrene and dioxygenated products. Besides, the addition of an appropriate amount of an organic solvent can promote the formation of secondary oxidation products. These results offer valuable insights into the dynamics of PAHs metabolism and the regulation of their metabolic pathways in biomimetic activation. In comparison to traditional liquid chromatography-mass spectrometry, the present SERS approach is more suitable for high-throughput evaluation of the metabolic process and kinetics of PAHs. We anticipate that this approach will enable a more general and comprehensive tracking of metabolic dynamics and molecular mechanisms involved in the biomimetic activation of other xenobiotics, such as procarcinogens, promutagens, and drugs.
Asunto(s)
Pirenos , Espectrometría Raman , Espectrometría Raman/métodos , Cinética , Pirenos/química , Pirenos/metabolismo , Biomimética , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos Policíclicos Aromáticos/química , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Propiedades de Superficie , Activación Metabólica , Sistema Enzimático del Citocromo P-450/metabolismo , Oxidación-ReducciónRESUMEN
Compartmentalization is a powerful concept to integrate multiscale components with diverse functionalities into miniature architectures. Inspired by evolution-optimized cell compartments, synthetic core-shell capsules enable storage of actives and on-demand delivery of programmed functions, driving scientific progress across various fields including adaptive materials, sustainable electronics, soft robotics, and precision medicine. To simultaneously maximize structural stability and environmental sensitivity, which are the two most critical characteristics dictating performance, diverse nanoparticles are incorporated into microcapsules with a dense shell and a liquid core. Recent studies have revealed that these nano-additives not only enhance the intrinsic properties of capsules including mechanical robustness, optical behaviors, and thermal conductivity, but also empower dynamic features such as triggered release, deformable structures, and fueled mobility. In this review, the physicochemical principles that govern nanoparticle assembly during microencapsulation are examined in detail and the architecture-controlled functionalities are outlined. Through the analysis of how each primary method implants nanoparticles into microcapsules, their distinct spatial organizations within the core-shell structures are highlighted. Following a detailed discussion of the specialized functions enabled by specific nanoparticles, the vision of the required fundamental insights and experimental studies for this class of microcarriers to fulfill its potential are sketched.
RESUMEN
Designing highly active and robust catalysts for the oxygen evolution reaction is key to improving the overall efficiency of the water splitting reaction. It has been previously demonstrated that evaporation induced self-assembly (EISA) can be used to synthesize highly porous and high surface area cerate-based fluorite nanocatalysts, and that substitution of Ce with 50% rare earth (RE) cations significantly improves electrocatalyst activity. Herein, the defect structure of the best performing nanocatalyst in the series are further explored, Nd2Ce2O7, with a combination of neutron diffraction and neutron pair distribution function analysis. It is found that Nd3 + cation substitution for Ce in the CeO2 fluorite lattice introduces higher levels of oxygen Frenkel defects and induces a partially reduced RE1.5Ce1.5O5 + x phase with oxygen vacancy ordering. Significantly, it is demonstrated that the concentration of oxygen Frenkel defects and improved electrocatalytic activity can be further enhanced by increasing the compositional complexity (number of RE cations involved) in the substitution. The resulting novel compositionally-complex fluorite- (La0.2Pr0.2Nd0.2Tb0.2Dy0.2)2Ce2O7 is shown to display a low OER overpotential of 210 mV at a current density of 10 mAcm-2 in 1M KOH, and excellent cycling stability. It is suggested that increasing the compositional complexity of fluorite nanocatalysts expands the ability to tailor catalyst design.
RESUMEN
Breeding tree genotypes that are both productive and drought-resistant is a primary goal in forestry. However, the relationships between plant hydraulics and yield at the genotype level, and their temporal stabilities, remain unclear. We selected six poplar genotypes from I-101 (Populus alba) × 84 K (P. alba × Popolus tremula var. glandulosa) for experiments in the first and fourth years after planting in a common garden. Measurements included stem embolism resistance, shoot hydraulic resistance and its partitioning between stems and leaves, vessel- and pit-level anatomy, leaf carbon acquisition capacity, carbon allocation to leaves, and aboveground biomass (yield proxy). Significant genetic variations in hydraulic properties and yield were found among genotypes in both years. Productive genotypes had wide vessels, large thin pit membranes, small pit apertures, and shallow pit chambers. Hydraulic resistance was negatively correlated with yield, enabling high stomatal conductance and assimilation rates. Productive genotypes allocated less aboveground carbon and hydraulic resistance to leaves. Temporally stable trade-offs between stem embolism resistance and yield, and between hydraulic segmentation and yield, were identified. These findings highlight the tight link between hydraulic function and yield and suggest that stable trade-offs may challenge breeding poplar genotypes that are both productive and drought-resistant.
RESUMEN
BACKGROUND: Bovine herpesvirus 1 (BoHV-1) is a major pathogen that affects the global bovine population, primarily inducing respiratory and reproductive disorders. Its ability to establish latent infections in neuronal cells and to reactivate under certain conditions poses a continual threat to uninfected hosts. In this study, we aimed to analyze the replication characteristics of BoHV-1 in neuronal cells, as well as the effects of viral replication on host cell immunity and physiology. METHODS: Using the Neuro-2a neuronal-origin cell line as a model, we explored the dynamics of BoHV-1 replication and analyzed differential gene expression profiles post-BoHV-1 infection using high-throughput RNA sequencing. RESULTS: BoHV-1 demonstrated restricted replication in Neuro-2a cells. BoHV-1 induced apoptotic pathways and enhanced the transcription of interferon-stimulated genes and interferon regulatory factors while suppressing the complement cascade in Neuro-2a cells. CONCLUSIONS: Different from BoHV-1 infection in other non-highly differentiated somatic cells result in viral dominance, BoHV-1 regulated the innate immune response in neuronal cells formed a "virus-nerve cell" relative equilibrium state, which may account for the restricted replication of BoHV-1 in neuronal cells, leading to a latent infection. These findings provide a foundation for further research into the mechanism underlying BoHV-1-induced latent infection in nerve cells.
Asunto(s)
Perfilación de la Expresión Génica , Herpesvirus Bovino 1 , Inmunidad Innata , Neuronas , Replicación Viral , Herpesvirus Bovino 1/inmunología , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/fisiología , Animales , Bovinos , Neuronas/virología , Neuronas/inmunología , Línea Celular , Ratones , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/veterinaria , Apoptosis , Transcriptoma , Latencia del Virus , Interacciones Huésped-Patógeno/inmunología , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/inmunología , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Secuenciación de Nucleótidos de Alto RendimientoRESUMEN
Lung adenocarcinoma (LUAC) as the most common lung cancer, and its incidence is increasing. Complement factor B (CFB) is an important factor in the alternative complement pathway. CFB has been reported to be involved in the progression of many cancers, including in pancreatic cancer, cutaneous squamous cell carcinoma, and nasopharyngeal carcinoma, but the function and molecular mechanism of CFB in LUAC remains unclear. The present study aimed to explore the role of CFB in LUAC malignant progression. In our previous study, we found that CFB was downregulated expression in LUAC clinical samples. Here, we firstly detected the cell function in vitro. Cell proliferation and migration were increased, while cell apoptosis and cell cycle arrest were suppressed after CFB knockdown. Overexpression of CFB repressed the malignant progression of LUAC in vitro. Besides, in vivo experiments revealed that upregulation of CFB inhibited tumor growth and Ki67 expression. Additionally, our data indicated that CFB negatively regulated Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Furthermore, upregulation of CFB inhibited the progression of LUAC was reversed by Ras/MAPK pathway activators (ML-098 or C16-PAF). Our study uncovered that CFB acts as a tumor suppressor repressed tumorigenesis of LUAC through inhibiting the Ras/MAPK pathway, suggesting that CFB may be a potential biomarker and therapeutic target for LUAC.