Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37215042

RESUMEN

Thioredoxin Reductase (TrxR) is a key enzyme in hydroperoxide detoxification through peroxiredoxin enzymes and in thiol-mediated redox regulation of cell signaling. Because cancer cells produce increased steady-state levels of reactive oxygen species (ROS; i.e., superoxide and hydrogen peroxide), TrxR is currently being targeted in clinical trials using the anti-rheumatic drug, auranofin (AF). AF treatment decreased TrxR activity and clonogenic survival in small cell lung cancer (SCLC) cell lines (DMS273 and DMS53) as well as the lung atypical (neuroendocrine tumor) NET cell line H727. AF treatment also significantly sensitized DMS273 and H727 cell lines in vitro to sorafenib, a multi-kinase inhibitor that was shown to decrease intracellular glutathione. The pharmacokinetic and pharmacodynamic properties of AF treatment in a mouse SCLC xenograft model was examined to maximize inhibition of TrxR activity without causing toxicity. AF was administered intraperitoneally at 2 mg/kg or 4 mg/kg (IP) once (QD) or twice daily (BID) for 1 to 5 days in mice with DMS273 xenografts. Plasma levels of AF were 10-20 µM (determined by mass spectrometry of gold) and the optimal inhibition of TrxR (50 %) was obtained at 4 mg/kg once daily, with no effect on glutathione peroxidase 1 activity. When this daily AF treatment was extended for 14 days a significant prolongation of median survival from 19 to 23 days (p=0.04, N=30 controls, 28 AF) was observed without causing changes in animal bodyweight, CBCs, bone marrow toxicity, blood urea nitrogen, or creatinine. These results show that AF is an effective inhibitor of TrxR both in vitro and in vivo in SCLC, capable of sensitizing NETs and SCLC to sorafenib, and supports the hypothesis that AF could be used as an adjuvant therapy with agents known to induce disruptions in thiol metabolism to enhance therapeutic efficacy.

2.
Cancer Biol Ther ; 25(1): 2382524, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39054566

RESUMEN

Thioredoxin Reductase (TrxR) functions to recycle thioredoxin (Trx) during hydroperoxide metabolism mediated by peroxiredoxins and is currently being targeted using the FDA-approved anti-rheumatic drug, auranofin (AF), to selectively sensitize cancer cells to therapy. AF treatment decreased TrxR activity and clonogenic survival in small cell lung cancer (SCLC) cell lines (DMS273 and DMS53) as well as the H727 atypical lung carcinoid cell line. AF treatment also significantly sensitized DMS273 and H727 cell lines in vitro to sorafenib, an FDA-approved multi-kinase inhibitor that depleted intracellular glutathione (GSH). The pharmacokinetic, pharmacodynamic, and safety profile of AF was examined in nude mice with DMS273 xenografts administered AF intraperitoneally at 2 mg/kg or 4 mg/kg (IP) once (QD) or twice daily (BID) for 1-5 d. Plasma levels of AF were 10-20 µM (determined by mass spectrometry of gold), and the optimal inhibition of TrxR activity was obtained at 4 mg/kg once daily, with no effect on glutathione peroxidase 1 activity. This AF treatment extended for 14 d, inhibited TrxR (>75%), and resulted in a significant prolongation of median overall survival from 19 to 23 d (p = .04, N = 30 controls, 28 AF). In this experiment, there were no observed changes in animal bodyweight, complete blood counts (CBCs), bone marrow toxicity, blood urea nitrogen, or creatinine. These results support the hypothesis that AF effectively inhibits TrxR both in vitro and in vivo in SCLC, sensitizes NETs and SCLC to sorafenib, and could be repurposed as an adjuvant therapy with targeted agents that induce disruptions in thiol metabolism.


Asunto(s)
Auranofina , Neoplasias Pulmonares , Compuestos de Fenilurea , Carcinoma Pulmonar de Células Pequeñas , Sorafenib , Reductasa de Tiorredoxina-Disulfuro , Ensayos Antitumor por Modelo de Xenoinjerto , Auranofina/farmacología , Auranofina/uso terapéutico , Animales , Sorafenib/farmacología , Sorafenib/uso terapéutico , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Humanos , Ratones , Línea Celular Tumoral , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/metabolismo , Ratones Desnudos , Niacinamida/análogos & derivados , Niacinamida/farmacología , Niacinamida/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA