Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Vet Res ; 16(1): 286, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32787853

RESUMEN

BACKGROUND: With evidence of warming climates, it is important to understand the effects of heat stress in farm animals in order to minimize production losses. Studying the changes in the brain proteome induced by heat stress may aid in understanding how heat stress affects brain function. The hypothalamus is a critical region in the brain that controls the pituitary gland, which is responsible for the secretion of several important hormones. In this study, we examined the hypothalamic protein profile of 10 pigs (15 ± 1 kg body weight), with five subjected to heat stress (35 ± 1 °C; relative humidity = 90%) and five acting as controls (28 ± 3 °C; RH = 90%). RESULT: The isobaric tags for relative and absolute quantification (iTRAQ) analysis of the hypothalamus identified 1710 peptides corresponding to 360 proteins, including 295 differentially expressed proteins (DEPs), 148 of which were up-regulated and 147 down-regulated, in heat-stressed animals. The Ingenuity Pathway Analysis (IPA) software predicted 30 canonical pathways, four functional groups, and four regulatory networks of interest. The DEPs were mainly concentrated in the cytoskeleton of the pig hypothalamus during heat stress. CONCLUSIONS: In this study, heat stress significantly increased the body temperature and reduced daily gain of body weight in pigs. Furthermore, we identified 295 differentially expressed proteins, 147 of which were down-regulated and 148 up-regulated in hypothalamus of heat stressed pigs. The IPA showed that the DEPs identified in the study are involved in cell death and survival, cellular assembly and organization, and cellular function and maintenance, in relation to neurological disease, metabolic disease, immunological disease, inflammatory disease, and inflammatory response. We hypothesize that a malfunction of the hypothalamus may destroy the host physical and immune function, resulting in decreased growth performance and immunosuppression in heat stressed pigs.


Asunto(s)
Respuesta al Choque Térmico , Hipotálamo/metabolismo , Proteómica , Porcinos Enanos/fisiología , Animales , Temperatura Corporal/fisiología , Masculino , Porcinos , Aumento de Peso/fisiología
2.
Int J Hyperthermia ; 36(1): 151-159, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30484725

RESUMEN

Hyperthermia in pigs induces suppressor of cytokine signaling (SOCS) 3 and SOCS4 expression in intestinal gut and causes disruption of inflammation cytokine production. These changes may affect the development of inflammatory bowel disease in heat-stressed pigs. However, the mechanisms are not well understood. Accordingly, in this study, we examined the roles of SOCS members in regulation of the nuclear factor (NF)-κB pathway and heat shock protein (HSP) 70-mediated cytokine induction in 293T human embryonic kidney cells and IPEC-J2 porcine small intestinal epithelial cells. Ectopic expression of HSP70 significantly modulated NF-κB activity (p ≤ .05). Moreover, co-expression of SOCS3 or SOCS4 with HSP70 reduced NF-κB activity, which was abolished by SOCS3 or SOCS4 knockdown with short hairpin RNA. Interestingly, MyD88-adaptor-like (Mal) protein was downregulated in cells expressing SOCS3 but not in cells expressing SOCS4. In addition, SOCS3 but not SOCS4 negatively regulated the activity of NF-κB induced by HSP70 overexpression via degradation of Mal. These findings may facilitate the development of novel SOCS3-based therapeutic strategies to control heat stress-related disorders in pigs.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Glicoproteínas de Membrana/metabolismo , FN-kappa B/metabolismo , Receptores de Interleucina-1/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Animales , Línea Celular , Células HEK293 , Humanos , Proteína 3 Supresora de la Señalización de Citocinas/genética , Porcinos , Transfección
3.
Environ Toxicol ; 31(3): 295-303, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25213558

RESUMEN

3,3',4,4',5-Pentachlorobiphenyl (PCB126) cause multiple adverse effects in organisms including animals and humans. Although PCB toxicities are linked to oxidative damage in rodents, the mechanism in early life stages of zebrafish is not clear. To explore the developmental toxicity mechanism of PCB126, three paradigms (toxicological phenotypes, biochemical changes, and molecular changes) were studied in 3-h postfertilization (hpf) zebrafish (Danio rerio) embryos exposed to different PCB126 concentrations (0, 16, 32, 64, and 128 µg/L) until 168 hpf. Developmental malformations, including pericardial and yolk sac edema, impaired lower jaw growth, spinal curvature, head edema and failure to inflate the swim bladder were observed, some as early as 72 hpf. Mortality was not apparent in early stages but significantly increased in a dose-dependent manner from 144 hpf onward. A dose-dependent significant increase in malformation rate was observed from 72 hpf onward with up to 100% at 132 hpf in embryos exposed to 128 µg/L of PCB126. Higher doses of PCB126 significantly decreased the copper-zinc superoxide dismutase (CuZn-Sod), catalase (Cat), and glutathione peroxidase (Gpx) enzyme activities at 96, 132 hpf, but markedly declined from thereafter. PCB126 at 128 µg/L significantly increased the malondialdehyde content at 72, 96, and 132 hpf. The transcriptional gene expression of antioxidant enzymes Cat and Gpx was upregulated in embryos exposed to 64 µg/L of PCB126 at 24 and 96 hpf. Sod1 messenger RNA (mRNA) was low in embryos exposed to 32 µg/L at 72 and 96 hpf but was induced in embryos exposed to 64 and 128 µg/L doses at 132 hpf. Collectively, the results suggest oxidative stress as a major factor in the induction of multiple developmental abnormalities in early life stages of zebrafish exposed to PCB126. However, the relationship between the antioxidant enzyme activity and the mRNA expression was not clear and the potential reasons for this are discussed.


Asunto(s)
Estrés Oxidativo , Bifenilos Policlorados/toxicidad , Teratógenos/toxicidad , Pez Cebra , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Embrión no Mamífero/efectos de los fármacos , Antagonistas de Estrógenos/toxicidad , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Environ Toxicol ; 31(2): 201-10, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25099626

RESUMEN

Dioxin-like PCB126 is a persistent organic pollutant that causes a range of syndromes including developmental toxicity. Dioxins have a high affinity for aryl hydrocarbon receptor (AhR) and induce cytochrome P4501A (CYP1A). However, the role of CYP1A activity in developmental toxicity is less clear. To better understand dioxin induced developmental toxicity, we exposed zebrafish (Danio rerio) embryos to PCB126 at concentrations of 0, 16, 32, 64, and 128 µg L(-1) from 3-h post-fertilization (hpf) to 168 hpf. The embryonic survival rate decreased at 144 and 168 hpf. The fry at 96 hpf displayed gross developmental malformations, including pericardial and yolk sac edema, spinal curvature, abnormal lower jaw growth, and non-inflated swim bladder. The pericardial and yolk sac edema rate significantly increased and the heart rate declined from 96 hpf compared with the controls. PCB126 did not alter the hatching rate. To elucidate the mechanism of PCB126-induced developmental toxicity, we conducted ethoxyresorufin-O-deethylase (EROD) in vivo assay to determine CYP1A enzyme activity, and real-time PCR to study the induction of CYP1A mRNA gene expression in embryo/larval zebrafish at 24, 72, 96, and 132 hpf. In vivo EROD activity was induced by PCB126 at 16 µg L(-1) concentration as early as 72 hpf but significant increases were observed only in zebrafish exposed to 64 and 128 µg L(-1) doses (p < 0.005) at 72, 96, and 132 hpf. Induction of CYP1A mRNA expression was significantly upregulated in zebrafish exposed to 32 and 64 µg L(-1) at 24, 72, 96, and 132 hpf. Overall, the severe pericardial and yolk sac edema and reduced heart rate suggest that heart defects are a sensitive endpoint, and the general trend of dose-dependent increase in EROD activity and induction of CYP1A mRNA gene expression provide evidence that the developmental toxicity of PCB126 to zebrafish embryos is mediated by activation of AhR.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/biosíntesis , Citocromo P-450 CYP1A1/biosíntesis , Contaminantes Ambientales/toxicidad , Bifenilos Policlorados/toxicidad , ARN Mensajero/biosíntesis , Teratógenos/toxicidad , Anomalías Inducidas por Medicamentos/patología , Animales , Hidrocarburo de Aril Hidroxilasas/genética , Relación Dosis-Respuesta a Droga , Embrión no Mamífero , Frecuencia Cardíaca/efectos de los fármacos , Larva , ARN Mensajero/genética , Saco Vitelino/efectos de los fármacos
5.
Biomed Res Int ; 2022: 8547379, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36093404

RESUMEN

The potential threat of global warming in the 21st century is on the ecosystem through many aspects, including the negative impact of rising global temperature on the health of humans and animals, especially domestic animals. The damage caused by heat stress to animals has been more and more significant as the worldwide climate continues to rise, along with the breeding industry's expanding scale and stocking density, and it has become the most important stress-causing factor in southern China. In this review, we described the effects of heat stress on animal immune organs and immune system. The much-debated topic is how hyperthermia affects the tight junction barrier. Heat stress also induces inflammation in the body of animals causing low body weight and loss of appetite. This review also discussed that heat stress leads to hepatic disorder, and it also damages the intestine. The small intestine experiences ischemia, and the permeability of the intestine increases. Furthermore, the oxidative stress and mitogen-activated protein kinase (MAPK) pathways have a significant role in stress-induced cellular and organ injury. The study has shown that MAPK activity in the small intestine was increased by heat stress. Heat stress caused extreme small intestine damage, enhanced oxidative stress, and activated MAPK signaling pathways.


Asunto(s)
Ecosistema , Proteínas de Uniones Estrechas , Animales , Biodiversidad , Respuesta al Choque Térmico , Humanos , Intestinos , Temperatura , Proteínas de Uniones Estrechas/metabolismo
6.
Int Immunopharmacol ; 99: 107727, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34426115

RESUMEN

Heat stress has severe implications on the health of mice involving intestinal mucosal barrier damage and dysregulated mucosal immune response. This study was designed with long-term heat stress to detect the protective effect of terpinen4-ol on body weight, colon length, organ index, morphological structure, inflammatory cytokines expression, Claudin-2, Occludin, and TLR4 signaling pathway of colonic tissue in mice under heat stress. A study found that oral administration of terpinen4-ol helped against mortality and intestinal inflammation in a mouse model of acute colitis induced by heat stress (40 °C per day for 4 h) exposed for 14 consecutive days. The mice were divided into five groups including control, heat stress, terpinen4-ol low dose (TER LD: 5 mg/kg), medium dose (TER MD: 10 mg/kg), and high dose (TER HD: 20 mg/kg) group. Our study showed that the heat-stress terpinen4-ol group had improved body weight, colon length, and organ index, the number of white blood cells, lymphocytes, and neutrophils in the blood as compared to the heat stress group. In addition, results showed that heat stress upregulated the expression of TLR4, p65, TNF-α, and IL-10. While, in mice receiving the oral administration of terpinen4-ol, the production of TNF-α, IL-10, TLR4, and p65 was suppressed on day 1, 7, and 14 of heat stress. In addition Claudin-2, Occludin mRNA levels were upregulated in mice receiving terpinen4-ol on day 1, 7, and 14 of heat stress. Furthermore, the IL-6, IL-10, TNF-α serum levels were also upregulated in mice under heat stress, but in mice receiving the oral administration of terpinen4-ol, the IL-6, IL-10, TNF-α level was down-regulated on day 1, 7, and 14 of heat stress. Histomorphological examination found that as compared to the control group, the muscle layer thickness and villi height of mice in the heat stress group were significantly reduced, while the changes of the above indicators in the terpinene4-ol groups were improved than those in the heat stress group. In conclusion, the terpinen4-ol has a protective effect on colonic tissue damage induced by heat stress.


Asunto(s)
Antiinflamatorios/uso terapéutico , Respuesta al Choque Térmico/efectos de los fármacos , Terpenos/uso terapéutico , Animales , Antiinflamatorios/farmacología , Claudinas/genética , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Citocinas/sangre , Citocinas/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Recuento de Leucocitos , Leucocitos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , FN-kappa B , Ocludina/genética , Terpenos/farmacología , Receptor Toll-Like 4/genética , Factor de Transcripción ReIA/genética
7.
Vet Immunol Immunopathol ; 236: 110236, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33892385

RESUMEN

Disease outbreaks heavily impact the economic viability of animal industries. Little is known about the mechanisms of immune system-related diseases in geese. Toll-like receptors (TLRs) play a major role in the anti-inflammatory immunity process in most animal species, but they have not been studied in the Magang goose. To elucidate the role of TLRs, reverse transcription polymerase chain reaction (RT-PCR) and PCR amplification of cDNA ends (Smart RACE) were used to clone the Magang goose TLR5 gene (mgTLR5). The full-length cDNA of mgTLR5 was 2967 bp in length, including a 5'-terminal untranslated region (UTR) of 215 bp, a 3'-terminal UTR of 384 bp, and an open reading frame of 2583 bp that encodes a protein of 860 amino acids. Structurally, mgTLR5 has a toll/interleukin-receptor (TIR) domain, a transmembrane domain, and seven leucine-rich repeats (LRRs) domains. Homology alignment of TLR5 and its TIR domains with other species revealed that mgTLR5 shared 98 % and 81.3 % of sequence similarity with white goose TLR5 and chicken TLR5, respectively. Quantitative RT-PCR showed that the mgTLR5 gene of the goose is widely expressed in all tested tissues, with the highest expression in the kidney and spleen. The increase in NF-κB promoter activity stimulated by flagellin was dependent on mgTLR5 expression in 293 T cells. Salmonella pullorum and flagellin significantly upregulated the expression of TLR5, IL-8, and IL-1 mRNA in peripheral blood mononucleotide cells of Magang goose cultured in vitro. Stimulation by S. pullorum for 24 h upregulated mgTLR5 expression in the cecum and kidney. We conclude that Magang goose TLR5 is a functional TLR5 homologue of the protein in other species and plays an important role in bacterial recognition.


Asunto(s)
Gansos/genética , Gansos/inmunología , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/inmunología , Animales , Clonación Molecular , Flagelina/farmacología , Regulación de la Expresión Génica , Células HEK293 , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Salmonella/inmunología
8.
Sci Rep ; 11(1): 20608, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663855

RESUMEN

Heat stress can significantly affect the immune function of the animal body. Heat stress stimulates oxidative stress in intestinal tissue and suppresses the immune responses of mice. The protecting effects of chitosan on heat stress induced colitis have not been reported. Therefore, the aim of this study was to investigate the protective effects of chitosan on immune function in heat stressed mice. Mice were exposed to heat stress (40 °C per day for 4 h) for 14 consecutive days. The mice (C57BL/6J), were randomly divided into three groups including: control group, heat stress, Chitosan group (LD: group 300 mg/kg/day, MD: 600 mg/kg/day, HD: 1000 mg/kg/day). The results showed that tissue histology was improved in chitosan groups than heat stress group. The current study showed that the mice with oral administration of chitosan groups had improved body performance as compared with the heat stress group. The results also showed that in chitosan treated groups the production of HSP70, TLR4, p65, TNF-α, and IL-10 was suppressed on day 1, 7, and 14 as compared to the heat stress group. In addition Claudin-2, and Occludin mRNA levels were upregulated in mice receiving chitosan on day 1, 7, and 14 of heat stress. Furthermore, the IL-6, IL-10, and TNF-α plasma levels were down-regulated on day 1, 7, and 14 of heat stress in mice receiving the oral administration of chitosan. In conclusion, the results showed that chitosan has an anti-inflammatory ability to tolerate hot environmental conditions.


Asunto(s)
Quitosano/farmacología , Respuesta al Choque Térmico/inmunología , Respuesta al Choque Térmico/fisiología , Animales , Quitosano/metabolismo , Colitis/tratamiento farmacológico , Colitis/inmunología , Colitis/metabolismo , Citocinas/análisis , Citocinas/sangre , Respuesta al Choque Térmico/efectos de los fármacos , Inflamación , Intestinos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/efectos de los fármacos , Receptor Toll-Like 4/metabolismo
9.
Gut Microbes ; 11(3): 310-334, 2020 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31760878

RESUMEN

It is well established that pig gut microbiota plays a critical role in maintaining metabolic homeostasis as well as in a myriad of physiological, neurological and immunological functions; including protection from pathogens and digestion of food materials - some of which would be otherwise indigestible by the pig. A rich and diverse gut microbial ecosystem (balanced microbiota) is the hallmark of good health; while qualitative and quantitative perturbations in the microbial composition can lead to development of various diseases. Alternatively, diseases caused by stressors or other factors have been shown to negatively impact the microbiota. This review focuses primarily on how commensal microorganisms in the gastrointestinal tract of pigs influence biochemical, physiological, immunological, and metabolic processes within the host animal.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Sus scrofa/microbiología , Animales , Encéfalo/fisiología , Cruzamiento , Dieta/veterinaria , Exposición a Riesgos Ambientales , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiología , Interacciones Microbiota-Huesped , Inmunidad
10.
Res Vet Sci ; 122: 102-110, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30481676

RESUMEN

Heat stress (HS) and its associated pathologies are major challenges facing the pig industry in southern China, and are responsible for large economic losses. However, the molecular mechanisms governing the abnormal secretion of HS-responsive hormones, such as glucocorticoids, are not fully understood. The goal of this study was to investigate differentially expressed proteins (DEPs) in the adrenal glands of pigs, and to elucidate changes in the immune neuroendocrine system in pigs following HS. Through a functional proteomics approach, we identified 1202 peptides, corresponding to 415 proteins. Of these, we found 226 DEPs between heat-stressed and control porcine adrenal gland tissue; 99 of these were up-regulated and 127 were down-regulated in response to HS. These DEPs included proteins involved in substrate transport, cytoskeletal changes, and stress responses. Ingenuity Pathway Analysis was used to identify the subcellular characterization, functional pathway involvement, regulatory networks, and upstream regulators of the identified proteins. Functional network and pathway analyses may provide insights into the complexity and dynamics of HS-host interactions, and may accelerate our understanding of the mechanisms of HS.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Respuesta al Choque Térmico , Proteómica , Porcinos , Animales , Regulación hacia Abajo , Regulación de la Expresión Génica , Regulación hacia Arriba
11.
Artículo en Inglés | MEDLINE | ID: mdl-28778752

RESUMEN

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have been reported to prevent neurodegenerative diseases such as Alzheimer's disease (AD) in both experimental and clinical/epidemiological studies. However, whether DHA and EPA from natural products exert similar or different neuroprotective effects and how these n-3 PUFAs target cellular and molecular mechanisms associated with neurodegenerative disease pathogenesis are unknown. In the present study, we used amyloid-ß (Aß)25-35-treated differentiated SH-SY5Y cells as a model of AD to compare the neuroprotective effect of DHA, EPA and their combination at various ratios. Administration of 20µM Aß25-35 significantly decreased SH-SY5Y cell viability, the expression of nerve growth factor (NGF), its TrkA receptor, and the level of glutathione (GSH) and increased reactive oxygen species (ROS), nitric oxide, tumor necrosis factor (TNF)-α, brain derived neurotrophic factor (BDNF) and its TrkB receptor. Aß25-35 also increased the Bax/Bcl-2 ratio and the expression of Caspase-3 in these cells. Compared with the Aß group, pretreatment with DHA/EPA significantly reduced cell death, especially at ratio of 1:1 and 2:1 DHA/EPA or pure DHA. However, the most efficient ratio for reducing changes in ROS and GSH and for decreasing TNF-α appeared at ratio of 1:2 and 1:1, respectively. The ratio of 1:1, 2:1 and pure DHA resulted in significant increase in the level of NGF. Furthermore, pure DHA was the most efficient for reducing Bax/Bcl ratio and Caspase-3 expression. In conclusion, DHA, EPA and their combination differently modulated Aß25-35-induced neurotoxicity in SH-SY5Y cells by exerting anti-oxidative, anti-inflammatory and neurotrophic effects.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Antiinflamatorios no Esteroideos/farmacología , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Neuronas/citología , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/dietoterapia , Enfermedad de Alzheimer/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Modelos Biológicos , Factor de Crecimiento Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Receptor trkA/metabolismo
12.
Vet Immunol Immunopathol ; 197: 31-38, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29475504

RESUMEN

Induction of the innate immune pathways is critical for early anti-viral defense. How geese recognize viral molecules and activate these pathways is not well understood. In mammals, Toll-like receptor 3 (TLR3) recognizes double-stranded RNA. Activation of TLR3 induces the activation of NF-кB and the production of type-I interferon. In this study, the goose TLR3 gene was cloned using rapid amplification of cDNA ends. Goose TLR3 encoded an 896-amino-acid protein, containing a signal secretion peptide, 14 extracellular leucine-rich repeat domains, a transmembrane domain, a Toll/interleukin-1 receptor signaling domain, and shared 46.7-84.4% homology with other species. Tissue expression of goose TLR3 varied markedly and was highest in the pancreas and lowest in the skin. Human embryonic kidney 293 cells transfected with goose TLR3 and NF-κB-luciferase-containing plasmids responded significantly to poly i:c. The expression of TLR3, IL-6 and IFN-γ mRNA, but not IL-1 mRNA, was significantly upregulated after poly i:c or high pathogenic avian influenza virus (H5N1) stimulation in goose peripheral blood mononuclear cells cultured in vitro. Furthermore, geese infected with H5N1 showed significant upregulation of TLR3, especially in the lung and brain. We conclude that goose TLR3 is a functional TLR3 homologue of the protein in other species and plays an important role in virus recognition.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/inmunología , Gripe Aviar/inmunología , Interferón gamma/inmunología , Interleucina-6/inmunología , Receptor Toll-Like 3/genética , Animales , Clonación Molecular , Gansos/inmunología , Células HEK293 , Humanos , Inmunidad Innata/efectos de los fármacos , Inductores de Interferón/farmacología , Interleucina-1/inmunología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Poli I-C/farmacología , Transducción de Señal , Receptor Toll-Like 3/inmunología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA