Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13498, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866841

RESUMEN

Aquatic macrophytes form a three dimensional complex structure in the littoral zones of lakes, with many physical, chemical and biological gradients and interactions. This special habitat harbours a unique microalgal assemblage called metaphyton, that differs both from the phytoplankton of the pelagial and from the benthic assemblages whose elements are tightly attached to the substrates. Since metaphytic assemblages significantly contribute to the diversity of lakes' phytoplankton, it is crucial to understand and disentangle those mechanisms that ensure their development. Therefore, we focused on the question of how a single solid physical structure contribute to maintaining metaphytic assemblages. Using a laboratory experiment we studied the floristic and functional differences of microalgal assemblages in microcosms that simulated the conditions that an open water, a complex natural macrophyte stand (Utricularia vulgaris L.), or an artificial substrate (cotton wool) provide for them. We inoculated the systems with a species rich (> 326 species) microalgal assemblage collected from a eutrophic oxbow lake, and studied the diversity, trait and functional group composition of the assemblages in a 24 day long experimental period. We found that both natural and artificial substrates ensured higher species richness than the open water environment. Functional richness in the open water environment was lower than in the aquaria containing natural macrophyte stand but higher than in which cotton wool was placed. This means that the artificial physical structure enhanced functional redundancy of the resident functional groups. Elongation measures of microalgal assemblages showed the highest variation in the microcosms that simulated the open water environment. Our results suggest that assembly of metaphytic algal communities is not a random process, instead a deterministic one driven by the niche characteristics of the complex three dimensional structure created by the stands of aquatic macrophytes.


Asunto(s)
Biodiversidad , Ecosistema , Lagos , Microalgas , Microalgas/crecimiento & desarrollo , Microalgas/fisiología , Fitoplancton/fisiología , Fitoplancton/crecimiento & desarrollo
2.
Harmful Algae ; 117: 102290, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35944954

RESUMEN

Cyanobacteria are notorious bloom formers causing various water quality concerns, such as toxin production, extreme diurnal variation of oxygen, pH, etc., therefore, their monitoring is essential to protect the ecological status of aquatic systems. Cyanobacterial cell counts and biovolumes are currently being used in water management and water quality alert systems. In this study, we investigated the accuracy of traditional colonial biovolume and cell count estimation approaches used in everyday practice. Using shape realistic 3D images of cyanobacterial colonies, we demonstrated that their shape cannot be approximated by ellipsoids. We also showed that despite the significant relationship between overall colony volume and cell biovolumes, because of the considerable scatter of cell count data the regressions give biased estimates for cyanobacterial cell counts. We proposed a novel approach to estimate cell counts in colonies that was based on the random close sphere packing method. This method provided good results only in those cases when overall colony volumes could be accurately measured. The visual investigation of colonies done by skilled experts has given precise but lower estimates for cell counts. The estimation results of several experts were surprisingly good, which suggests that this capability can be improved and estimation bias can be reduced to the level acceptable for water quality estimations.


Asunto(s)
Cianobacterias , Monitoreo del Ambiente , Recuento de Células , Monitoreo del Ambiente/métodos , Calidad del Agua
3.
Plants (Basel) ; 10(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34451595

RESUMEN

Increased proliferation of algae is a current problem in natural and artificial water bodies. Controlling nutrients is the most sustainable treatment of increased algal proliferation, however in certain cases, it is not sufficiently available, or it does not provide results fast enough. Chemicals derived from natural sources, which could be effective in low concentrations and are biodegradable, may have an advantage over conventional chemical treatments. The main aim of the present study was to investigate the anti-cyanobacterial and anti-algal properties of allyl-isothiocyanate-containing essential oil produced from horseradish roots with a complex approach of the topic: on laboratory strains of cyanobacteria and eukaryotic algae, on microcosms containing natural phytoplankton assemblages, and on semi-natural biofilms. The results show that acute treatment can significantly reduce the viability of all the tested cyanobacteria and eukaryotic algae. Results of microcosm experiments with natural phytoplankton assemblages show that horseradish essential oil from 7.1 × 10-6% (v/v) is applicable to push back phytoplankton proliferation even in natural assemblages. The individual number in the biofilm was dropped down to one-fifth of the original individual number, so 7.1 × 10-6% (v/v) and higher concentration of the essential oil can be considered as a successful treatment against biofouling.

4.
Environ Pollut ; 212: 508-518, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26967537

RESUMEN

In recent years measurable concentrations of non-steroidal anti-inflammatory drugs (NSAIDs) have been shown in the aquatic environment as a result of increasing human consumption. Effects of five frequently used non-steroidal anti-inflammatory drugs (diclofenac, diflunisal, ibuprofen, mefenamic acid and piroxicam in 0.1 mg ml(-1) concentration) in batch cultures of cyanobacteria (Synechococcus elongatus, Microcystis aeruginosa, Cylindrospermopsis raciborskii), and eukaryotic algae (Desmodesmus communis, Haematococcus pluvialis, Cryptomonas ovata) were studied. Furthermore, the effects of the same concentrations of NSAIDs were investigated in natural algal assemblages in microcosms. According to the changes of chlorophyll-a content, unicellular cyanobacteria seemed to be more tolerant to NSAIDs than eukaryotic algae in laboratory experiments. Growth of eukaryotic algae was reduced by all drugs, the cryptomonad C. ovata was the most sensitive to NSAIDs, while the flagellated green alga H. pluvialis was more sensitive than the non-motile green alga D. communis. NSAID treatments had weaker impact in the natural assemblages dominated by cyanobacteria than in the ones dominated by eukaryotic algae, confirming the results of laboratory experiments. Diversity and number of functional groups did not change notably in cyanobacteria dominated assemblages, while they decreased significantly in eukaryotic algae dominated ones compared to controls. The results highlight that cyanobacteria (especially unicellular ones) are less sensitive to the studied, mostly hardly degradable NSAIDs, which suggest that their accumulation in water bodies may contribute to the expansion of cyanobacterial mass productions in appropriate environmental circumstances by pushing back eukaryotic algae. Thus, these contaminants require special attention during wastewater treatment and monitoring of surface waters.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Chlorophyta/efectos de los fármacos , Cianobacterias/efectos de los fármacos , Clorofila/metabolismo , Clorofila A , Humanos , Contaminantes del Agua/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA