Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Dis ; 99(4): 535-543, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30699552

RESUMEN

Apple scab, caused by Venturia inaequalis, is the most important disease in apple production, reducing yield and quality of fruit. Control of apple scab in commercial orchards currently depends on multiple applications of fungicides. The potential of the antagonistic isolate Cladosporium cladosporioides H39, originating from a sporulating colony of V. inaequalis, to control apple scab development was tested in eight trials during 2 years in orchards in Eperjeske (Hungary), Dabrowice (Poland), and Bavendorf (Germany) planted with different cultivars. Treatments were conducted as calendar sprays or after infection periods. Additional trials in an orchard in Randwijk (The Netherlands) focused on the effect of timing of antagonist application before or after infection periods. The overall results of the field trials consistently showed-for the first time-that stand-alone applications of the antagonist C. cladosporioides H39 can reduce apple scab in leaves and fruit. This was demonstrated in an organic growing system as well as in conventional orchards by spray schedules applied during the primary or the summer season. In both systems, the same control levels could be reached as with common fungicide schedules. Efficacies reached 42 to 98% on leaf scab incidence and 41 to 94% on fruit scab. The antagonist was also effective if applied one or even several days (equivalent to approximately 300 to 2,000 degree h) after infection events in several field trials and a trial conducted in Randwijk with single-spray applications at different intervals before or after infection events. Better understanding of the biology of the antagonist will help to further exploit its use in apple scab control.

2.
Plants (Basel) ; 9(7)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650549

RESUMEN

Microbiome management is a promising way to suppress verticillium wilt, a severe disease in Brassica caused by Verticillium longisporum. In order to improve current biocontrol strategies, we compared bacterial Verticillium antagonists in different assays using a hierarchical selection and evaluation scheme, and we integrated outcomes of our previous studies. The result was strongly dependent on the assessment method chosen (in vitro, in vivo, in situ), on the growth conditions of the plants and their genotype. The most promising biocontrol candidate identified was a Brassica endophyte Serratia plymuthica F20. Positive results were confirmed in field trials and by microscopically visualizing the three-way interaction. Applying antagonists in seed treatment contributes to an exceptionally low ecological footprint, supporting efficient economic and ecological solutions to controlling verticillium wilt. Indigenous microbiome, especially soil and seed microbiome, has been identified as key to understanding disease outbreaks and suppression. We suggest that verticillium wilt is a microbiome-driven disease caused by a reduction in microbial diversity within seeds and in the soil surrounding them. We strongly recommend integrating microbiome data in the development of new biocontrol and breeding strategies and combining both strategies with the aim of designing healthy microbiomes, thus making plants more resilient toward soil-borne pathogens.

3.
Microbiol Resour Announc ; 9(23)2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32499356

RESUMEN

The genomes of three Golubevia isolates (BC0812, BC0850, and BC0902) that have been shown to reduce conidiation of Blumeria graminis f. sp. tritici were sequenced using a dual-platform approach. The assembled genomes will help to elucidate the molecular mechanisms underlying the biocontrol effect of this understudied group.

4.
Front Plant Sci ; 10: 845, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379891

RESUMEN

Microbial biological control agents (MBCAs) are applied to crops for biological control of plant pathogens where they act via a range of modes of action. Some MBCAs interact with plants by inducing resistance or priming plants without any direct interaction with the targeted pathogen. Other MBCAs act via nutrient competition or other mechanisms modulating the growth conditions for the pathogen. Antagonists acting through hyperparasitism and antibiosis are directly interfering with the pathogen. Such interactions are highly regulated cascades of metabolic events, often combining different modes of action. Compounds involved such as signaling compounds, enzymes and other interfering metabolites are produced in situ at low concentrations during interaction. The potential of microorganisms to produce such a compound in vitro does not necessarily correlate with their in situ antagonism. Understanding the mode of action of MBCAs is essential to achieve optimum disease control. Also understanding the mode of action is important to be able to characterize possible risks for humans or the environment and risks for resistance development against the MBCA. Preferences for certain modes of action for an envisaged application of a MBCA also have impact on the screening methods used to select new microbials. Screening of MBCAs in bioassays on plants or plant tissues has the advantage that MBCAs with multiple modes of action and their combinations potentially can be detected whereas simplified assays on nutrient media strongly bias the selection toward in vitro production of antimicrobial metabolites which may not be responsible for in situ antagonism. Risks assessments for MBCAs are relevant if they contain antimicrobial metabolites at effective concentration in the product. However, in most cases antimicrobial metabolites are produced by antagonists directly on the spot where the targeted organism is harmful. Such ubiquitous metabolites involved in natural, complex, highly regulated interactions between microbial cells and/or plants are not relevant for risk assessments. Currently, risks of microbial metabolites involved in antagonistic modes of action are often assessed similar to assessments of single molecule fungicides. The nature of the mode of action of antagonists requires a rethinking of data requirements for the registration of MBCAs.

5.
Pest Manag Sci ; 73(1): 14-21, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27568588

RESUMEN

EU agriculture is currently in transition from conventional crop protection to integrated pest management (IPM). Because biocontrol is a key component of IPM, many European countries recently have intensified their national efforts on biocontrol research and innovation (R&I), although such initiatives are often fragmented. The operational outputs of national efforts would benefit from closer collaboration among stakeholders via transnationally coordinated approaches, as most economically important pests are similar across Europe. This paper proposes a common European framework on biocontrol R&I. It identifies generic R&I bottlenecks and needs as well as priorities for three crop types (arable, vegetable and perennial crops). The existing gap between the market offers of biocontrol solutions and the demand of growers, the lengthy and expensive registration process for biocontrol solutions and their varying effectiveness due to variable climatic conditions and site-specific factors across Europe are key obstacles hindering the development and adoption of biocontrol solutions in Europe. Considering arable, vegetable and perennial crops, a dozen common target pests are identified for each type of crop and ranked by order of importance at European level. Such a ranked list indicates numerous topics on which future joint transnational efforts would be justified. © 2016 Society of Chemical Industry.


Asunto(s)
Agricultura/economía , Control Biológico de Vectores/métodos , Europa (Continente) , Control Biológico de Vectores/legislación & jurisprudencia , Investigación
6.
Trends Biotechnol ; 30(5): 250-8, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22336383

RESUMEN

Biopesticides based on living microbes and their bioactive compounds have been researched and promoted as replacements for synthetic pesticides for many years. However, lack of efficacy, inconsistent field performance and high cost have generally relegated them to niche products. Recently, technological advances and major changes in the external environment have positively altered the outlook for biopesticides. Significant increases in market penetration have been made, but biopesticides still only make up a small percentage of pest control products. Progress in the areas of activity spectra, delivery options, persistence of effect and implementation have contributed to the increasing use of biopesticides, but technologies that are truly transformational and result in significant uptake are still lacking.


Asunto(s)
Control Biológico de Vectores/métodos , Control Biológico de Vectores/tendencias , Biotecnología/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA