Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Materials (Basel) ; 15(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35683142

RESUMEN

The aim of this work was to develop a new coating material based on Ni20Cr alloy modified with up to 50%wt. rhenium. The modification was carried out by the mechanical mixing of the base powder and ammonium perrhenate with the subsequent thermoreduction in an H2 atmosphere. The obtained powder consists of a nickel-chromium core surrounded by a rhenium shell. The characterization of the powders-including their microstructure, phase and chemical composition, density, flowability, particle size distribution, and specific surface area-was performed. The influence of plasma current intensity and hydrogen gas flow on in-flight particle temperature and velocity were investigated. The results indicate that there is interdiffusion between the base Ni20Cr and the rhenium shell, resulting in intermediary solid solution(s). The modified powders have a higher specific surface area and a lower flowability, but this does not prevent them from being used as feedstock in plasma spraying. In-flight measurements reveal that increasing the content of rhenium allows for the higher temperature of particles, though it also reduces their speed.

2.
Materials (Basel) ; 14(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467527

RESUMEN

The work presents a possibility of fabrication of inexpensive iron-based powders intended to form the matrix in sintered diamond-impregnated tool components. In this study, a finely dispersed, pre-alloyed steel powder, containing over 95 wt.% Fe, has been designed and fabricated by means of a proprietary process developed at AGH-University of Science & Technology. It has been shown that the experimental powder can be consolidated to a closed porosity condition (>95% theoretical density) by pressure-less sintering at a temperature below 900 °C. The as-consolidated material is characterized by an excellent combination of hardness (~250 HV) and mechanical strength (>1200 MPa in 3-point bending) that meets the diamond tooling requirements. Its properties can be modified to some extent by varying the cold forming pressure and sintering temperature.

3.
Materials (Basel) ; 13(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266319

RESUMEN

This paper reports on hybrid, bioactive ceramic Ca-P-based coating formation on a Ti-6Al-7Nb alloy substrate to enhance the osseointegration process. The Ti alloy was anodized in a Ca3(PO4)2 suspension and then the additional layer was formed by the sol-gel technique to obtain a mixture of the calcium phosphate compounds. The oxide layer was porous and additional ceramic particles were formed after sol-gel treatment (scanning electron microscopy analysis coupled with energy-dispersive x-ray spectroscopy). The ceramic particles were formed on some parts of the oxide layer and did not completely fill the pores. The layer thickness of the anodized Ti alloy was comprised between 3.01 and 5.03 µm and increased to 7.52-12.30 µm after the formation of an additional layer. Post-treatment of the anodized Ti alloys caused a decrease in surface roughness, and the layer became strongly hydrophilic. Crystalline phase analysis (X-ray diffraction, XRD) showed that the hybrid layer was composed of TiO2 (anatase), Ca3(PO4)2, Ca10(PO4)6(OH)2 and a partially amorphous phase; thus, the layer was also analyzed by Raman spectroscopy. The hybrid layer showed worse adhesion to the substrate than the anodized layer only; however, the coating was not brittle, and the first delamination of the layer was determined at 1.84 ± 0.11 N during scratch-test measurement. The hybrid coating was favorable for collagen type I and lactoferrin adsorption, strongly influencing the proliferation of osteoblast-like MG-63 cells. The coatings were cytocompatible and may find applications in formation of the functional layers on long-term implants' surface after.

4.
Materials (Basel) ; 12(18)2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527501

RESUMEN

The electrochemical parameters used for surface treatments should be individually determined for each titanium alloy. In this paper, the parameters for the anodization of a medical-grade Ti-6Al-7Nb alloy in hydroxyapatite suspensions were determined. It was found that formation of a favorable porous oxide layer occurred for the plasma electrolytic oxidation process in a Ca(H2PO2)2 solution with 150 g/dm3 hydroxyapatite particles at 350 V and 450 V. The differences in the morphology, chemical and phase composition caused variability in the average surface roughness (up 4.25 µm) and contact angle (strongly hydrophilic) values. Incorporation of the hydroxyapatite ceramic particles into formed TiO2 layer also influenced the layer thickness and adhesion of the layers to the substrate. The oxide layers formed on the Ti-6Al-7Nb alloy were between 5.19 and 31.4 µm in thickness with an average range of approximately 8-15 µm. The formation of a ceramic layer under controlled electrochemical parameters allows the design of a bioactive surface of implants for bone tissue. The hydroxyapatite particles may promote the osseointegration process. Thus, in this study, the formation of ceramic composites on medical-grade Ti surfaces is presented and discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA