Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Acta Neuropathol ; 142(2): 361-374, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34003336

RESUMEN

Loss of nuclear SMARCB1 (INI1/hSNF5/BAF47) protein expression due to biallelic mutations of the SMARCB1 tumor suppressor gene is a hallmark of atypical teratoid/rhabdoid tumors (ATRT), but the presence of cytoplasmic SMARCB1 protein in these tumors has not yet been described. In a series of 102 primary ATRT, distinct cytoplasmic SMARCB1 staining on immunohistochemistry was encountered in 19 cases (19%) and was highly over-represented in cases showing pathogenic sequence variants leading to truncation or mutation of the C-terminal part of SMARCB1 (15/19 vs. 4/83; Chi-square: 56.04, p = 1.0E-10) and, related to this, in tumors of the molecular subgroup ATRT-TYR (16/36 vs. 3/66; Chi-square: 24.47, p = 7.6E-7). Previous reports have indicated that while SMARCB1 lacks a bona fide nuclear localization signal, it harbors a masked nuclear export signal (NES) and that truncation of the C-terminal region results in unmasking of this NES leading to cytoplasmic localization. To determine if cytoplasmic localization found in ATRT is due to unmasking of NES, we generated GFP fusions of one of the SMARCB1 truncating mutations (p.Q318X) found in the tumors along with a p.L266A mutation, which was shown to disrupt the interaction of SMARCB1-NES with exportin-1. We found that while the GFP-SMARCB1(Q318X) mutant localized to the cytoplasm, the double mutant GFP-SMARCB1(Q318X;L266A) localized to the nucleus, confirming NES requirement for cytoplasmic localization. Furthermore, cytoplasmic SMARCB1(Q318X) was unable to cause senescence as determined by morphological observations and by senescence-associated ß-galactosidase assay, while nuclear SMARCB1(Q318X;L266A) mutant regained this function. Selinexor, a selective exportin-1 inhibitor, was effective in inhibiting the nuclear export of SMARCB1(Q318X) and caused rapid cell death in rhabdoid tumor cells. In conclusion, inhibition of nuclear export restores nuclear localization and residual tumor suppressor function of truncated SMARCB1. Therapies aimed at preventing nuclear export of mutant SMARCB1 protein may represent a promising targeted therapy in ATRT harboring truncating C-terminal SMARCB1 mutations.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Neoplasia Residual/genética , Tumor Rabdoide/metabolismo , Proteína SMARCB1/metabolismo , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/metabolismo , Preescolar , Femenino , Genes Supresores de Tumor/fisiología , Humanos , Lactante , Masculino , Mutación/genética , Neoplasia Residual/metabolismo , Neoplasias Neuroepiteliales/genética , Neoplasias Neuroepiteliales/metabolismo , Tumor Rabdoide/genética , Proteína SMARCB1/genética , Teratoma/genética
2.
J Virol ; 90(21): 9889-9904, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27558426

RESUMEN

INI1/hSNF5/SMARCB1/BAF47 is an HIV-specific integrase (IN)-binding protein that influences HIV-1 transcription and particle production. INI1 binds to SAP18 (Sin3a-associated protein, 18 kDa), and both INI1 and SAP18 are incorporated into HIV-1 virions. To determine the significance of INI1 and the INI1-SAP18 interaction during HIV-1 replication, we isolated a panel of SAP18-interaction-defective (SID)-INI1 mutants using a yeast reverse two-hybrid screen. The SID-INI1 mutants, which retained the ability to bind to IN, cMYC, and INI1 but were impaired for binding to SAP18, were tested for their effects on HIV-1 particle production. SID-INI1 dramatically reduced the intracellular Gag/Gag-Pol protein levels and, in addition, decreased viral particle production. The SID-INI1-mediated effects were less dramatic in trans complementation assays using IN deletion mutant viruses with Vpr-reverse transcriptase (RT)-IN. SID-INI1 did not inhibit long-terminal-repeat (LTR)-mediated transcription, but it marginally decreased the steady-state gag RNA levels, suggesting a posttranscriptional effect. Pulse-chase analysis indicated that in SID-INI1-expressing cells, the pr55Gag levels decreased rapidly. RNA interference analysis indicated that small hairpin RNA (shRNA)-mediated knockdown of INI1 reduced the intracellular Gag/Gag-Pol levels and further inhibited HIV-1 particle production. These results suggest that SID-INI1 mutants inhibit multiple stages of posttranscriptional events of HIV-1 replication, including intracellular Gag/Gag-Pol RNA and protein levels, which in turn inhibits assembly and particle production. Interfering INI1 leads to a decrease in particle production and Gag/Gag-Pol protein levels. Understanding the role of INI1 and SAP18 in HIV-1 replication is likely to provide novel insight into the stability of Gag/Gag-Pol, which may lead to the development of novel therapeutic strategies to inhibit HIV-1 late events. IMPORTANCE: Significant gaps exist in our current understanding of the mechanisms and host factors that influence HIV-1 posttranscriptional events, including gag RNA levels, Gag/Gag-Pol protein levels, assembly, and particle production. Our previous studies suggested that the IN-binding host factor INI1 plays a role in HIV-1 assembly. An ectopically expressed minimal IN-binding domain of INI1, S6, potently and selectively inhibited HIV-1 Gag/Gag-Pol trafficking and particle production. However, whether or not endogenous INI1 and its interacting partners, such as SAP18, are required for late events was unknown. Here, we report that endogenous INI1 and its interaction with SAP18 are necessary to maintain intracellular levels of Gag/Gag-Pol and for particle production. Interfering INI1 or the INI1-SAP18 interaction leads to the impairment of these processes, suggesting a novel strategy for inhibiting posttranscriptional events of HIV-1 replication.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cromatina/genética , Proteínas de Fusión gag-pol/genética , VIH-1/genética , Procesamiento Postranscripcional del ARN/genética , Proteína SMARCB1/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Proteínas Portadoras/metabolismo , Línea Celular , Proteínas Co-Represoras , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Fusión gag-pol/metabolismo , Células HEK293 , Integrasa de VIH/genética , Integrasa de VIH/metabolismo , VIH-1/metabolismo , Humanos , Proteínas de Unión al ARN , Proteína SMARCB1/metabolismo , Replicación Viral/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
3.
Proc Natl Acad Sci U S A ; 108(1): 319-24, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173237

RESUMEN

Rhabdoid tumors (RTs) are rare, highly aggressive pediatric malignancies with poor prognosis and with no standard or effective treatment strategies. RTs are characterized by biallelic inactivation of the INI1 tumor suppressor gene. INI1 directly represses CCND1 and activates cyclin-dependent kinase (cdk) inhibitors p16(Ink4a) and p21(CIP). RTs are exquisitely dependent on cyclin D1 for genesis and survival. To facilitate translation of unique therapeutic strategies, we have used genetically engineered, Ini1(+/-) mice for therapeutic testing. We found that PET can be used to noninvasively and accurately detect primary tumors in Ini1(+/-) mice. In a PET-guided longitudinal study, we found that treating Ini1(+/-) mice bearing primary tumors with the pan-cdk inhibitor flavopiridol resulted in complete and stable regression of some tumors. Other tumors showed resistance to flavopiridol, and one of the resistant tumors overexpressed cyclin D1, more than flavopiridol-sensitive cells. The concentration of flavopiridol used was not sufficient to down-modulate the high level of cyclin D1 and failed to induce cell death in the resistant cells. Furthermore, FISH and PCR analyses indicated that there is aneuploidy and increased CCND1 copy number in resistant cells. These studies indicate that resistance to flavopiridol may be correlated to elevated cyclin D1 levels. Our studies also indicate that Ini1(+/-) mice are valuable tools for testing unique therapeutic strategies and for understanding mechanisms of drug resistance in tumors that arise owing to loss of Ini1, which is essential for developing effective treatment strategies against these aggressive tumors.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Ciclina D1/metabolismo , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/genética , Tumor Rabdoide/tratamiento farmacológico , Animales , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Cartilla de ADN/genética , Flavonoides/uso terapéutico , Silenciador del Gen , Técnicas Histológicas , Immunoblotting , Inmunohistoquímica , Hibridación Fluorescente in Situ , Estudios Longitudinales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Piperidinas/uso terapéutico , Reacción en Cadena de la Polimerasa , Tomografía de Emisión de Positrones , Tumor Rabdoide/genética , Tumor Rabdoide/ultraestructura , Proteína SMARCB1
4.
Methods Mol Biol ; 2807: 45-59, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743220

RESUMEN

Latent HIV-1 reservoirs are a major obstacle to the eradication of HIV-1. Several cure strategies have been proposed to eliminate latent reservoirs. One of the key strategies involves the reactivation of latent HIV-1 from cells using latency-reversing agents. However, currently it is unclear whether any of the latency-reversing agents are able to completely reactivate HIV-1 provirus transcription in all latent cells. An understanding of the reactivation of HIV-1 provirus at single-cell single-molecule level is necessary to fully comprehend the reactivation of HIV-1 in the reservoirs. Furthermore, since reactivable viruses in the pool of latent reservoirs are rare, combining single-cell imaging techniques with the ability to visualize a large number of reactivated single cells that express both viral RNA and proteins in a pool of uninfected and non-reactivated cells will provide unprecedented information about cell-to-cell variability in reactivation. Here, we describe the single-cell single-molecule RNA-FISH (smRNA-FISH) method to visualize HIV-1 gag RNA combined with the immunofluorescence (IF) method to detect Gag protein to characterize the reactivated cells. This method allows the visualization of subcellular localization of RNA and proteins before and after reactivation and facilitates absolute quantitation of the number of transcripts per cell using FISH-quant. In addition, we describe a high-speed and high-resolution scanning (HSHRS) fluorescence microscopy imaging method to visualize rare and reactivated cells in a pool of non-reactivated cells with high efficiency.


Asunto(s)
Técnica del Anticuerpo Fluorescente , VIH-1 , Hibridación Fluorescente in Situ , ARN Viral , Imagen Individual de Molécula , Análisis de la Célula Individual , Activación Viral , Latencia del Virus , VIH-1/fisiología , VIH-1/genética , Humanos , Hibridación Fluorescente in Situ/métodos , ARN Viral/genética , Análisis de la Célula Individual/métodos , Imagen Individual de Molécula/métodos , Técnica del Anticuerpo Fluorescente/métodos , Infecciones por VIH/virología , Provirus/genética
5.
Viruses ; 16(2)2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38400039

RESUMEN

SARS-CoV-2 infection remains a global burden. Despite intensive research, the mechanism and dynamics of early viral replication are not completely understood, such as the kinetics of the formation of genomic RNA (gRNA), sub-genomic RNA (sgRNA), and replication centers/organelles (ROs). We employed single-molecule RNA-fluorescence in situ hybridization (smRNA-FISH) to simultaneously detect viral gRNA and sgRNA and immunofluorescence to detect nsp3 protein, a marker for the formation of RO, and carried out a time-course analysis. We found that single molecules of gRNA are visible within the cytoplasm at 30 min post infection (p.i.). Starting from 2 h p.i., most of the viral RNA existed in clusters/speckles, some of which were surrounded by single molecules of sgRNA. These speckles associated with nsp3 protein starting at 3 h p.i., indicating that these were precursors to ROs. Furthermore, RNA replication was asynchronous, as cells with RNA at all stages of replication were found at any given time point. Our probes detected the SARS-CoV-2 variants of concern, and also suggested that the BA.1 strain exhibited a slower rate of replication kinetics than the WA1 strain. Our results provide insights into the kinetics of SARS-CoV-2 early post-entry events, which will facilitate identification of new therapeutic targets for early-stage replication to combat COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Replicación de ARN , Hibridación Fluorescente in Situ/métodos , Especies Reactivas de Oxígeno/metabolismo , ARN Subgenómico , ARN Guía de Sistemas CRISPR-Cas , Técnica del Anticuerpo Fluorescente , Proteínas/metabolismo , ARN Viral/genética , ARN Viral/metabolismo
6.
Retrovirology ; 10: 66, 2013 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-23799881

RESUMEN

BACKGROUND: Retroviral integrase catalyzes integration of viral DNA into the host genome. Integrase interactor (INI)1/hSNF5 is a host factor that binds to HIV-1 IN within the context of Gag-Pol and is specifically incorporated into HIV-1 virions during assembly. Previous studies have indicated that INI1/hSNF5 is required for late events in vivo and for integration in vitro. To determine the effects of disrupting the IN-INI1 interaction on the assembly and infectivity of HIV-1 particles, we isolated mutants of IN that are defective for binding to INI1/hSNF5 and tested their effects on HIV-1 replication. RESULTS: A reverse yeast two-hybrid system was used to identify INI1-interaction defective IN mutants (IID-IN). Since protein-protein interactions depend on the surface residues, the IID-IN mutants that showed high surface accessibility on IN crystal structures (K71R, K111E, Q137R, D202G, and S147G) were selected for further study. In vitro interaction studies demonstrated that IID-IN mutants exhibit variable degrees of interaction with INI1. The mutations were engineered into HIV-1(NL4-3) and HIV-Luc viruses and tested for their effects on virus replication. HIV-1 harboring IID-IN mutations were defective for replication in both multi- and single-round infection assays. The infectivity defects were correlated to the degree of INI1 interaction of the IID-IN mutants. Highly defective IID-IN mutants were blocked at early and late reverse transcription, whereas partially defective IID-IN mutants proceeded through reverse transcription and nuclear localization, but were partially impaired for integration. Electron microscopic analysis of mutant particles indicated that highly interaction-defective IID-IN mutants produced morphologically aberrant virions, whereas the partially defective mutants produced normal virions. All of the IID-IN mutant particles exhibited normal capsid stability and reverse transcriptase activity in vitro. CONCLUSIONS: Our results demonstrate that a severe defect in IN-INI1 interaction is associated with production of defective particles and a subsequent defect in post-entry events. A partial defect in IN-INI1 interaction leads to production of normal virions that are partially impaired for early events including integration. Our studies suggest that proper interaction of INI1 with IN within Gag-Pol is necessary for proper HIV-1 morphogenesis and integration.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Integrasa de VIH/metabolismo , VIH-1/fisiología , Interacciones Huésped-Patógeno , Transcripción Reversa/fisiología , Factores de Transcripción/metabolismo , Ensamble de Virus/fisiología , Integración Viral/fisiología , Línea Celular , Integrasa de VIH/genética , VIH-1/genética , VIH-1/ultraestructura , Humanos , Microscopía Electrónica de Transmisión , Proteína SMARCB1 , Virión/ultraestructura
7.
Am J Med Genet A ; 161A(3): 405-16, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23401320

RESUMEN

Schwannomatosis is the third major form of neurofibromatosis and is characterized by the development of multiple schwannomas in the absence of bilateral vestibular schwannomas. The 2011 Schwannomatosis Update was organized by the Children's Tumor Foundation (www.ctf.org) and held in Los Angeles, CA, from June 5-8, 2011. This article summarizes the highlights presented at the Conference and represents the "state-of-the-field" in 2011. Genetic studies indicate that constitutional mutations in the SMARCB1 tumor suppressor gene occur in 40-50% of familial cases and in 8-10% of sporadic cases of schwannomatosis. Tumorigenesis is thought to occur through a four-hit, three-step model, beginning with a germline mutation in SMARCB1 (hit 1), followed by loss of a portion of chromosome 22 that contains the second SMARCB1 allele and one NF2 allele (hits 2 and 3), followed by mutation of the remaining wild-type NF2 allele (hit 4). Insights from research on HIV and pediatric rhabdoid tumors have shed light on potential molecular pathways that are dysregulated in schwannomatosis-related schwannomas. Mouse models of schwannomatosis have been developed and promise to further expand our understanding of tumorigenesis and the tumor microenvironment. Clinical reports have described the occurrence of intracranial meningiomas in schwannomatosis patients and in families with germline SMARCB1 mutations. The authors propose updated diagnostic criteria to incorporate new clinical and genetic findings since 2005. In the next 5 years, the authors expect that advances in basic research in the pathogenesis of schwannomatosis will lead toward clinical investigations of potential drug therapies.


Asunto(s)
Neurilemoma/genética , Neurofibromatosis/genética , Neoplasias Cutáneas/genética , Animales , Proteínas Cromosómicas no Histona/fisiología , Proteínas de Unión al ADN/fisiología , Modelos Animales de Enfermedad , Humanos , Neurilemoma/patología , Neurilemoma/terapia , Neurofibromatosis/patología , Neurofibromatosis/terapia , Proteína SMARCB1 , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/terapia , Factores de Transcripción/fisiología , Carga Tumoral
8.
Methods Mol Biol ; 2610: 85-97, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36534284

RESUMEN

INI1/SMARCB1 is a host protein that interacts with HIV-1 integrase (IN) and influences multiple stages of viral replication. IN is a viral enzyme responsible for integration, and it also binds to HIV-1 genomic RNA. Recent studies from our laboratory demonstrated that IN-interacting Rpt1 (Repeat 1) domain of INI1 and TAR RNA region of HIV-1 genome both bind to the same residues and surface of IN C-terminal domain (CTD). Based on a series of analyses, we found that INI1-Rpt1 and TAR RNA structurally mimic each other and that IN mutants defective for binding to INI1 are also defective for binding to RNA and produce morphologically defective virions. The similarity of INI1-Rpt1 and TAR RNA in binding to IN was established by testing the binding of IN-CTD mutants with INI1-Rpt1 and TAR RNA using the Alpha assay. Here, I describe Alpha assay methods to compare the binding of INI1-Rpt1 protein and HIV-1 TAR RNA to IN-CTD and describe a three-component assay to demonstrate the competition between TAR RNA and INI1-Rpt1 to bind to IN.


Asunto(s)
Proteínas de Unión al ADN , Integrasa de VIH , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , ARN , Proteínas Cromosómicas no Histona/genética , Integrasa de VIH/genética , ARN Viral
9.
Methods Mol Biol ; 2610: 75-84, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36534283

RESUMEN

HIV-1 integrase (IN) is a key enzyme that is essential for mediating the insertion of retroviral DNA into the host chromosome. IN also exhibits additional functions which are not fully elucidated, including its ability to bind to viral genomic RNA. Lack of binding of IN to RNA within the virions has been shown to be associated with production of morphologically defective virus particles. However, the exact structure of HIV-1 IN bound to RNA is not known. Based on the studies that C-terminal domain (CTD) of IN binds to TAR RNA region and based on the observation that TAR and the host factor INI1 binding to IN-CTD are identical, we computationally modelled the IN-CTD/TAR complex structure. Computational modeling of nucleic acid binding to proteins is a valuable method to understand the macromolecular interaction when experimental methods of solving the complex structures are not feasible. The current model of the IN-CTD/TAR complex may facilitate further understanding of this interaction and may lead to therapeutic targeting of IN-CTD/RNA interactions to inhibit HIV-1 replication.


Asunto(s)
VIH-1 , VIH-1/genética , ARN Viral/química , Replicación Viral , Simulación por Computador
10.
J Virol ; 85(5): 2254-65, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21159874

RESUMEN

INI1/hSNF5 is an HIV-1 integrase (IN) binding protein specifically incorporated into virions. A truncated mutant of INI1 (S6, amino acids 183 to 294) harboring the minimal IN binding Rpt1 domain potently inhibits HIV-1 particle production in a transdominant manner. The inhibition requires interaction of S6 with IN within Gag-Pol. While INI1 is a nuclear protein and harbors a masked nuclear export signal (NES), the transdominant negative mutant S6 is cytoplasmic, due to the unmasking of NES. Here, we examined the effects of subcellular localization of S6 on HIV-1 inhibition and further investigated the stages of assembly that are affected. We found that targeting a nuclear localization signal-containing S6 variant [NLS-S6(Rpt1)] to the nucleoplasm (but not to the nucleolus) resulted in complete reversal of inhibition of particle production. Electron microscopy indicated that although no electron-dense particles at any stage of assembly were seen in cells expressing S6, virions were produced in cells expressing the rescue mutant NLS-S6(Rpt1) to wild-type levels. Immunofluorescence analysis revealed that p24 exhibited a diffuse pattern of localization within the cytoplasm in cells expressing S6 in contrast to accumulation along the membrane in controls. Pulse-chase analysis indicated that in S6-expressing cells, although Gag(Pr55(gag)) protein translation was unaffected, processing and release of p24 were defective. Together, these results indicate that expression of S6 in the cytoplasm interferes with trafficking of Gag-Pol/Gag to the membrane and causes a defective processing leading to inhibition of assembly at an early stage prior to particle formation and budding.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Infecciones por VIH/metabolismo , VIH-1/fisiología , Mutación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ensamble de Virus , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Línea Celular , Proteínas Cromosómicas no Histona/química , Proteínas de Unión al ADN/química , Infecciones por VIH/genética , Infecciones por VIH/virología , Integrasa de VIH/genética , Integrasa de VIH/metabolismo , VIH-1/enzimología , VIH-1/genética , Humanos , Datos de Secuencia Molecular , Señales de Localización Nuclear , Unión Proteica , Transporte de Proteínas , Proteína SMARCB1 , Factores de Transcripción/química
11.
bioRxiv ; 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36561180

RESUMEN

SARS-CoV-2 infection has caused a major global burden. Despite intensive research, the mechanism and dynamics of early viral replication are not completely understood including the kinetics of formation of plus stranded genomic and subgenomic RNAs (gRNA and sgRNA) starting from the RNA from the first virus that enters the cell. We employed single-molecule RNA-fluorescence in situ hybridization (smRNA-FISH) to simultaneously detect viral gRNA and sgRNA in infected cells and carried out a time course analysis to determine the kinetics of their replication. We visualized the single molecules of gRNA within the cytoplasm of infected cells 30 minutes post-infection and detected the co-expression of gRNA and sgRNA within two hours post-infection. Furthermore, we observed the formation of a replication organelle (RO) from a single RNA, which led to the formation of multiple ROs within the same cells. Single molecule analysis indicated that while gRNA resided in the center of these ROs, the sgRNAs were found to radiate and migrate out of these structures. Our results also indicated that after the initial delay, there was a rapid but asynchronous replication, and the gRNA and sgRNAs dispersed throughout the cell within 4-5 hours post-infection forming multiple ROs that filled the entire cytoplasm. These results provide insight into the kinetics of early post-entry events of SARS-CoV-2 and the formation of RO, which will help to understand the molecular events associated with viral infection and facilitate the identification of new therapeutic targets that can curb the virus at a very early stage of replication to combat COVID-19. Author Summary: SARS-CoV-2 infection continues to be a global burden. Soon after the entry, SARS-CoV-2 replicates by an elaborate process, producing genomic and subgenomic RNAs (gRNA and sgRNAs) within specialized structures called replication organelles (RO). Many questions including the timing of multiplication of gRNA and sgRNA, the generation, subcellular localization, and function of the ROs, and the mechanism of vRNA synthesis within ROs is not completely understood. Here, we have developed probes and methods to simultaneously detect the viral gRNA and a sgRNA at single cell single molecule resolution and have employed a method to scan thousands of cells to visualize the early kinetics of gRNA and sgRNA synthesis soon after the viral entry into the cell. Our results reveal that the replication is asynchronous and ROs are rapidly formed from a single RNA that enters the cell within 2 hours, which multiply to fill the entire cell cytoplasm within ~4 hours after infection. Furthermore, our studies provide a first glimpse of the gRNA and sgRNA synthesis within ROs at single molecule resolution. Our studies may facilitate the development of drugs that inhibit the virus at the earliest possible stages of replication to minimize the pathogenic impact of viral infection.

12.
PLoS Pathog ; 5(6): e1000463, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19503603

RESUMEN

HIV-1 integrase (IN) is a virally encoded protein required for integration of viral cDNA into host chromosomes. INI1/hSNF5 is a component of the SWI/SNF complex that interacts with HIV-1 IN, is selectively incorporated into HIV-1 (but not other retroviral) virions, and modulates multiple steps, including particle production and infectivity. To gain further insight into the role of INI1 in HIV-1 replication, we screened for INI1-interacting proteins using the yeast two-hybrid system. We found that SAP18 (Sin3a associated protein 18 kD), a component of the Sin3a-HDAC1 complex, directly binds to INI1 in yeast, in vitro and in vivo. Interestingly, we found that IN also binds to SAP18 in vitro and in vivo. SAP18 and components of a Sin3A-HDAC1 complex were specifically incorporated into HIV-1 (but not SIV and HTLV-1) virions in an HIV-1 IN-dependent manner. Using a fluorescence-based assay, we found that HIV-1 (but not SIV) virion preparations harbour significant deacetylase activity, indicating the specific recruitment of catalytically active HDAC into the virions. To determine the requirement of virion-associated HDAC1 to HIV-1 replication, an inactive, transdominant negative mutant of HDAC1 (HDAC1(H141A)) was utilized. Incorporation of HDAC1(H141A) decreased the virion-associated histone deacetylase activity. Furthermore, incorporation of HDAC1(H141A) decreased the infectivity of HIV-1 (but not SIV) virions. The block in infectivity due to virion-associated HDAC1(H141A) occurred specifically at the early reverse transcription stage, while entry of the virions was unaffected. RNA-interference mediated knock-down of HDAC1 in producer cells resulted in decreased virion-associated HDAC1 activity and a reduction in infectivity of these virions. These studies indicate that HIV-1 IN and INI1/hSNF5 bind SAP18 and selectively recruit components of Sin3a-HDAC1 complex into HIV-1 virions. Furthermore, HIV-1 virion-associated HDAC1 is required for efficient early post-entry events, indicating a novel role for HDAC1 during HIV-1 replication.


Asunto(s)
Proteínas Portadoras/metabolismo , Integrasa de VIH/metabolismo , VIH-1/fisiología , Histona Desacetilasas/metabolismo , Replicación Viral , Línea Celular , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Co-Represoras , Proteínas de Unión al ADN/metabolismo , Interpretación Estadística de Datos , VIH-1/metabolismo , Histona Desacetilasa 1 , Histona Desacetilasas/genética , Humanos , Inmunoprecipitación , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN , Proteínas Represoras/metabolismo , Proteína SMARCB1 , Virus de la Inmunodeficiencia de los Simios/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3 , Factores de Transcripción/metabolismo , Virión/metabolismo
13.
Cancer Cell Int ; 11: 34, 2011 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-21951911

RESUMEN

BACKGROUND: Rhabdoid tumors (RTs) are aggressive pediatric malignancies with poor prognosis. N-(4-hydroxy phenyl) retinamide (4-HPR or fenretinide) is a potential chemotherapeutic for RTs with activity correlated to its ability to down-modulate Cyclin D1. Previously, we synthesized novel halogen-substituted and peptidomimetic-derivatives of 4-HPR that retained activity in MON RT cells. Here we analyzed the effect of 4-HPR in inhibiting the growth of several RT, glioma, and breast cancer cell lines and tested their effect on cell cycle, apoptosis and Cyclin D1 expression. METHODS: Effect of compounds on RT cell cycle profiles, and cell death were assessed by MTS cell survival assays and FACS analysis. The effects of treatment on Cyclin D1 expression were determined by immunoblotting. The efficacy of these compounds on glioma and breast cancer cell lines was also determined using MTS assays. RESULTS: Low micromolar concentrations of 4-HPR derivatives inhibited cell survival of all RT cells tested. The 4-HPR derivatives altered RT cell cycle profiles and induced high levels of cell death that was correlated with their potency. ATRA exhibited high IC50 values in all cell lines tested and did not cause cell death. In MON RT cells, the iodo-substituted compounds were more active than 4-HPR in inducing cell cycle arrest and apoptosis. Additionally, the activity of the compounds correlated with their ability to down-modulate Cyclin D1: while active compounds reduced Cyclin D1 levels, inactive ATRA did not. In glioma and breast cancer cell lines, 4-HPR and 4-HPR derivatives showed variable efficacy. CONCLUSIONS: Here we demonstrate, for the first time, that the inhibitory activities of novel halogen-substituted and peptidomimetic derivatives of 4-HPR are correlated to their ability to induce cell death and down-modulate Cyclin D1. These 4-HPR derivatives showed varied potencies in breast cancer and glioma cell lines. These data indicate that further studies are warranted on these derivatives of 4-HPR due to their low IC50s in RT cells. These derivatives are of general interest, as conjugation of halogen radioisotopes such as 18F, 124I, or 131I to 4-HPR will allow us to combine chemotherapy and radiotherapy with a single drug, and to perform PET/SPECT imaging studies in the future.

14.
Nat Commun ; 12(1): 2743, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980829

RESUMEN

INI1/SMARCB1 binds to HIV-1 integrase (IN) through its Rpt1 domain and exhibits multifaceted role in HIV-1 replication. Determining the NMR structure of INI1-Rpt1 and modeling its interaction with the IN-C-terminal domain (IN-CTD) reveal that INI1-Rpt1/IN-CTD interface residues overlap with those required for IN/RNA interaction. Mutational analyses validate our model and indicate that the same IN residues are involved in both INI1 and RNA binding. INI1-Rpt1 and TAR RNA compete with each other for IN binding with similar IC50 values. INI1-interaction-defective IN mutant viruses are impaired for incorporation of INI1 into virions and for particle morphogenesis. Computational modeling of IN-CTD/TAR complex indicates that the TAR interface phosphates overlap with negatively charged surface residues of INI1-Rpt1 in three-dimensional space, suggesting that INI1-Rpt1 domain structurally mimics TAR. This possible mimicry between INI1-Rpt1 and TAR explains the mechanism by which INI1/SMARCB1 influences HIV-1 late events and suggests additional strategies to inhibit HIV-1 replication.


Asunto(s)
Integrasa de VIH/metabolismo , VIH-1/fisiología , ARN Viral/metabolismo , Proteína SMARCB1/metabolismo , Replicación Viral , Genoma Viral , Integrasa de VIH/química , Integrasa de VIH/genética , Interacciones Huésped-Patógeno , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Unión Proteica , Dominios Proteicos , ARN Viral/química , Proteína SMARCB1/química , Proteína SMARCB1/genética , Virión/crecimiento & desarrollo , Virión/metabolismo
15.
BMC Cancer ; 10: 634, 2010 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-21092078

RESUMEN

BACKGROUND: Rhabdoid Tumors (RTs) are highly aggressive pediatric malignancies with poor prognosis. There are currently no standard or effective treatments for RTs in part because treatments are not designed to specifically target these tumors. Our previous studies indicated that targeting the cyclin/cdk pathway is a novel therapeutic strategy for RTs and that a pan-cdk inhibitor, flavopiridol, inhibits RT growth. Since the toxicities and narrow window of activity associated with flavopiridol may limit its clinical use, we tested the effect of combining flavopiridol with 4-hydroxy-Tamoxifen (4OH-Tam) in order to reduce the concentration of flavopiridol needed for inhibition of RTs. METHODS: The effects of flavopiridol, 4OH-Tam, and their combination on RT cell cycle regulation and apoptosis were assessed by: i) cell survival assays, ii) FACS analysis, iii) caspase activity assays, and iv) immunoblot analysis. Furthermore, the role of p53 in flavopiridol- and 4OH-Tam-mediated induction of cell cycle arrest and apoptosis was characterized using RNA interference (siRNA) analysis. The effect of p53 on flavopiridol-mediated induction of caspases 2, 3, 8 and 9 was also determined. RESULTS: We found that the combination of flavopiridol and 4OH-Tam potently inhibited the growth of RT cells. Low nanomolar concentrations of flavopiridol induced G2 arrest, which was correlated to down-modulation of cyclin B1 and up-regulation of p53. Addition of 4OH-Tam did not affect flavopiridol-mediated G2 arrest, but enhanced caspase 3,7-mediated apoptosis induced by the drug. Abrogation of p53 by siRNA abolished flavopiridol-induced G2 arrest, but enhanced flavopiridol- (but not 4OH-Tam-) mediated apoptosis, by enhancing caspase 2 and 3 activities. CONCLUSIONS: Combining flavopiridol with 4OH-Tam potently inhibited the growth of RT cells by increasing the ability of either drug alone to induce caspases 2 and 3 thereby causing apoptosis. The potency of flavopiridol was enhanced by abrogation of p53. Our results warrant further studies investigating the combinatorial effects of flavopiridol and 4OH-Tam as a novel therapeutic strategy for RTs and other tumors that have been shown to respond to flavopiridol.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Flavonoides/administración & dosificación , Piperidinas/administración & dosificación , Tumor Rabdoide/tratamiento farmacológico , Tamoxifeno/análogos & derivados , Apoptosis , Caspasas/biosíntesis , Ciclo Celular , Supervivencia Celular , Ensayos de Selección de Medicamentos Antitumorales , Citometría de Flujo , Fase G2 , Humanos , Interferencia de ARN , Tamoxifeno/administración & dosificación , Proteína p53 Supresora de Tumor/metabolismo
16.
Methods Mol Biol ; 485: 271-93, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19020832

RESUMEN

HIV-1 replication involves a complex network of multiple protein-protein interactions. HIV-1 viral proteins exhibit both homomeric interactions among themselves and heteromeric interactions with other viral or cellular proteins. Identification and characterization of these protein-protein interactions have provided a wealth of information about the biology of the virus. Precise information about the residues involved in interaction is valuable in understanding the functional significance of these interactions, and can be determined relatively easily for proteins whose three-dimensional structure is known. However, the lack of three-dimensional structural information for several host proteins makes it harder to carry out detailed biochemical and functional studies. Reverse-two-hybrid system, a variation of the yeast-two-hybrid system can be used to genetically isolate mutants of a protein that are defective for specific protein-protein interactions. The strategy is to create a library of random mutations in one of the interacting partners and from among this library, screen for those that are defective for interaction using yeast two-hybrid system. In this review, we will describe a method to efficiently generate a library of random mutations and to further screen this library using the simple color scheme of using LacZ as a reporter gene. Once the mutants are isolated, they are tested in other biochemical systems and can be subjected to further functional and virological studies.


Asunto(s)
VIH-1/fisiología , Interacciones Huésped-Patógeno , Proteínas/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/metabolismo , Replicación Viral
17.
Clin Cancer Res ; 14(2): 523-32, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18223228

RESUMEN

PURPOSE: Rhabdoid tumors are aggressive and incurable pediatric malignancies. INI1/hSNF5, a tumor suppressor biallelically deleted/inactivated in rhabdoid tumors, directly represses cyclin D1. Rhabdoid tumors and cells are exquisitely dependent on cyclin D1 for genesis and survival, suggesting that targeting the cyclin/cyclin-dependent kinase (cdk) axis may be an effective therapeutic strategy for these tumors. Because cdk inhibitors have not been used for preclinical or clinical testing on rhabdoid tumors, we investigated the effect of flavopiridol, a pan-cdk inhibitor with promising clinical activity, on rhabdoid tumors. EXPERIMENTAL DESIGN: The effect of flavopiridol on rhabdoid cells was tested in vitro using survival, cell cycle, and apoptosis assays. Its effect was assessed in vivo using xenografted rhabdoid tumor models. Immunoblot and immunohistochemical analysis was used to assess the effect of flavopiridol on cyclin D1 and p21 expression in vitro and in vivo, respectively. RESULTS: Nanomolar concentrations of flavopiridol inhibited rhabdoid cell growth (IC(50) approximately 200 nmol/L), induced G(1) and G(2) arrest, and apoptosis in vitro in a concentration-dependent manner. These effects were correlated with the down-modulation of cyclin D1, up-regulation of p21, and induction of caspase 3/7 activities. Flavopiridol (at 7.5 mg/kg) significantly inhibited the growth of xenografted rhabdoid tumors, and its effect was correlated with the induction of p21 and down-modulation of cyclin D1. CONCLUSIONS: Flavopiridol is effective in inducing cell cycle arrest and cytotoxicity in rhabdoid tumors. Its effects are correlated with the down-regulation of cyclin D1 and the up-regulation of p21. Flavopiridol is potentially a novel chemotherapeutic agent for rhabdoid tumors.


Asunto(s)
Antineoplásicos/farmacología , Flavonoides/farmacología , Piperidinas/farmacología , Tumor Rabdoide/tratamiento farmacológico , Tumor Rabdoide/patología , Animales , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclina D1/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Ratones SCID , Trasplante de Neoplasias , Inhibidores de Proteínas Quinasas/farmacología , Tumor Rabdoide/enzimología , Tumor Rabdoide/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Mol Endocrinol ; 22(4): 838-57, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18096694

RESUMEN

Antagonizing the action of the human nuclear xenobiotic receptor pregnane X receptor (PXR) may have important clinical implications in preventing drug-drug interactions and improving therapeutic efficacy. We provide evidence that a naturally occurring phytoestrogen, coumestrol, is an antagonist of the nuclear receptor PXR (NR1I2). In transient transfection assays, coumestrol was able to suppress the agonist effects of SR12813 on human PXR activity. PXR activity was assessed and correlated with effects on the metabolism of the anesthetic tribromoethanol and on gene expression in primary human hepatocytes. We found that coumestrol was able to suppress the effects of PXR agonists on the expression of the known PXR target genes, CYP3A4 and CYP2B6, in primary human hepatocytes as well as inhibit metabolism of tribromoethanol in humanized PXR mice. Coumestrol at concentrations above 1.0 microm competed in scintillation proximity assays with a labeled PXR agonist for binding to the ligand-binding cavity. However, mammalian two-hybrid assays and transient transcription data using ligand-binding-cavity mutant forms of PXR show that coumestrol also antagonizes coregulator recruitment. This effect is likely by binding to a surface outside the ligand-binding pocket. Taken together, these data imply that there are antagonist binding site(s) for coumestrol on the surface of PXR. These studies provide the basis for development of novel small molecule inhibitors of PXR with the ultimate goal of clinical applications toward preventing drug-drug interactions.


Asunto(s)
Cumestrol/farmacología , Fitoestrógenos/farmacología , Receptores de Esteroides/antagonistas & inhibidores , Animales , Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Línea Celular , Células Cultivadas , Receptor de Androstano Constitutivo , Cumestrol/química , Cumestrol/metabolismo , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Etanol/análogos & derivados , Etanol/metabolismo , Femenino , Expresión Génica/efectos de los fármacos , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Inmunohistoquímica , Espectrometría de Masas , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Coactivador 1 de Receptor Nuclear , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Fitoestrógenos/química , Fitoestrógenos/metabolismo , Receptor X de Pregnano , Unión Proteica , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
19.
Elife ; 82019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31172941

RESUMEN

Cellular ESCRT machinery plays pivotal role in HIV-1 budding and release. Extracellular stimuli that modulate HIV-1 egress are currently unknown. We found that CCL2 induced by HIV-1 clade B (HIV-1B) infection of macrophages enhanced virus production, while CCL2 immuno-depletion reversed this effect. Additionally, HIV-1 clade C (HIV-1C) was refractory to CCL2 levels. We show that CCL2-mediated increase in virus production requires Gag late motif LYPX present in HIV-1B, but absent in HIV-1C, and ALIX protein that recruits ESCRT III complex. CCL2 immuno-depletion sequestered ALIX to F-actin structures, while CCL2 addition mobilized it to cytoplasm facilitating Gag-ALIX binding. The LYPX motif improves virus replication and its absence renders the virus less fit. Interestingly, novel variants of HIV-1C with PYRE/PYKE tetrapeptide insertions in Gag-p6 conferred ALIX binding, CCL2-responsiveness and enhanced virus replication. These results, for the first time, indicate that CCL2 mediates ALIX mobilization from F-actin and enhances HIV-1 release and fitness.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quimiocina CCL2/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , VIH-1/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Liberación del Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Células Cultivadas , Humanos , Macrófagos/virología
20.
Retrovirology ; 5: 102, 2008 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-19014595

RESUMEN

BACKGROUND: HIV-1 integrase (IN) is a key viral enzymatic molecule required for the integration of the viral cDNA into the genome. Additionally, HIV-1 IN has been shown to play important roles in several other steps during the viral life cycle, including reverse transcription, nuclear import and chromatin targeting. Interestingly, previous studies have demonstrated that the expression of HIV-1 IN induces the lethal phenotype in some strains of Saccharomyces cerevisiae. In this study, we performed mutagenic analyses of the C-terminal region of the catalytic core domain of HIV-1 IN in order to delineate the critical amino acid(s) and/or motif(s) required for the induction of the lethal phenotype in the yeast strain HP16, and to further elucidate the molecular mechanism which causes this phenotype. RESULTS: Our study identified three HIV-1 IN mutants, V165A, A179P and KR186,7AA, located in the C-terminal region of the catalytic core domain of IN that do not induce the lethal phenotype in yeast. Chromatin binding assays in yeast and mammalian cells demonstrated that these IN mutants were impaired for the ability to bind chromatin. Additionally, we determined that while these IN mutants failed to interact with LEDGF/p75, they retained the ability to bind Integrase interactor 1. Furthermore, we observed that VSV-G-pseudotyped HIV-1 containing these IN mutants was unable to replicate in the C8166 T cell line and this defect was partially rescued by complementation with the catalytically inactive D64E IN mutant. CONCLUSION: Overall, this study demonstrates that three mutations located in the C-terminal region of the catalytic core domain of HIV-1 IN inhibit the IN-induced lethal phenotype in yeast by inhibiting the binding of IN to the host chromatin. These results demonstrate that the C-terminal region of the catalytic core domain of HIV-1 IN is important for binding to host chromatin and is crucial for both viral replication and the promotion of the IN-induced lethal phenotype in yeast.


Asunto(s)
Cromatina/metabolismo , Integrasa de VIH/metabolismo , VIH-1/fisiología , Viabilidad Microbiana , Saccharomyces cerevisiae/fisiología , Replicación Viral , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sustitución de Aminoácidos/genética , Animales , Dominio Catalítico , Línea Celular , Chlorocebus aethiops , Proteínas Cromosómicas no Histona/metabolismo , Análisis Mutacional de ADN , Proteínas de Unión al ADN/metabolismo , Prueba de Complementación Genética , Integrasa de VIH/genética , VIH-1/genética , Humanos , Mutagénesis , Mutación Missense , Proteína SMARCB1 , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA