Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Small ; 13(43)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28524361

RESUMEN

Fabrication strategies that pursue "simplicity" for the production process and "functionality" for a device, in general, are mutually exclusive. Therefore, strategies that are less expensive, less equipment-intensive, and consequently, more accessible to researchers for the realization of omnipresent electronics are required. Here, this study presents a conceptually different approach that utilizes the inartificial design of the surface roughness of paper to realize a capacitive pressure sensor with high performance compared with sensors produced using costly microfabrication processes. This study utilizes a writing activity with a pencil and paper, which enables the construction of a fundamental capacitor that can be used as a flexible capacitive pressure sensor with high pressure sensitivity and short response time and that it can be inexpensively fabricated over large areas. Furthermore, the paper-based pressure sensors are integrated into a fully functional 3D touch-pad device, which is a step toward the realization of omnipresent electronics.

2.
Macromol Biosci ; 24(4): e2300359, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38011541

RESUMEN

Cerebrospinal fluid (CSF) leakage is a common complication of intradural surgery or incidental durotomy in neurosurgery. Dural suturing is a common method for durotomy repair, but this technique requires a long operation time and includes the risk of CSF leakage by incomplete sealing. Glue-type sealants are effective for watertight dural closure. However, unresolved shortcomings include insufficient sealing performance, poor biocompatibility, and excessive swelling. Here, a dural sealant using light-activated hyaluronic acid (HA) with multi-networks (HA photosealant) that provides fast sealing performance and high biocompatibility is reported. The HA photosealants form a watertight hydrogel barrier with multilength networks under low-energy visible light exposure (405 nm, <1 J cm-2) for 5 s and allow firm tissue adhesion on the wet dural surface. In a rabbit model of craniectomy and durotomy, HA photosealants exhibit the faster sealing performance of dural tears and enhance dural repair with accelerated bone formation compared to commercial surgical glues, with no degenerative changes, such as inflammation or necrosis, in histopathological evaluation. This biocompatible HA photosealant can be applied in a variety of clinical settings that require fast wound closure as a promising potential.


Asunto(s)
Pérdida de Líquido Cefalorraquídeo , Ácido Hialurónico , Animales , Conejos , Ácido Hialurónico/farmacología , Procedimientos Neuroquirúrgicos/métodos , Craneotomía , Hidrogeles/farmacología
3.
J Adv Res ; 53: 249-260, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36632887

RESUMEN

INTRODUCTION: miRNA-21 (miR-21) is highly expressed in glioblastoma, facilitating tumor growth by blocking the expression of apoptosis-related genes. Therefore, an antisense microRNA oligonucleotide (AMO) against miR-21 was suggested as a therapeutic nucleic acid for glioblastoma. OBJECTIVES: AMO21 co-micelles were developed with tumor-targeting T7 peptides as an AMO21 delivery system by intranasal administration. METHODS: Cholesterol-conjugated AMO21 (AMO21c) was mixed with cholesterol-conjugated T7 peptides (T7c) to produce tumor-targeted co-micelles. Physical characterization was performed by dynamic light scattering, gel retardation assay, scanning electron microscope and heparin competition assay. In vitro transfection efficiency to C6 glioblastoma cells was measured by flow cytometry. The AMO21c/T7c co-micelles were administered by intranasal instillation into the brain of intracranial glioblastoma rat models. Scrambled T7 (scrT7) and scrambled AMO21c (scrAMO21c) were used as a negative control. The therapeutic effects of the AMO21c/T7c co-micelles were evaluated by real time RT-PCR, immunohistochemistry, TUNEL assay, and Nissl staining. RESULTS: The formation of the AMO21c/T7c co-micelles was confirmed in gel retardation and heparin competition assays. The highest delivery efficiency in vitro was achieved at a 1:10 wt ratio of AMO21c/T7c. The AMO21c/T7c co-micelles had higher delivery efficiency into C6 glioblastoma cells than naked AMO21c or AMO21c/lipofectamine complexes. After intranasal administration into the intracranial glioblastoma models, the delivery efficiency of the co-micelles into the brain was also higher than those of naked AMO21c and AMO21c/scrambled T7c. Thanks to their enhanced delivery efficiency, the AMO21c/T7c co-micelles downregulated miR-21, inducing the production of the pro-apoptotic phosphatase and tensin homolog (PTEN) and programmed cell death 4 (PDCD4) proteins in the tumor tissues. The tumor size was reduced by the AMO21c/T7c co-micelles more effectively than naked AMO21c, AMO21c/lipofectamine, or scrAMO21c/T7c treatment. CONCLUSION: The results suggest that the co-micelles of AMO21c and T7c may be an efficient delivery system into a brain tumor through intranasal administration.


Asunto(s)
Glioblastoma , MicroARNs , Ratas , Animales , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Micelas , Oligonucleótidos Antisentido/uso terapéutico , Línea Celular Tumoral , Péptidos/uso terapéutico , Oligonucleótidos/uso terapéutico , MicroARNs/genética , Proteínas Reguladoras de la Apoptosis/uso terapéutico , Colesterol , Heparina/uso terapéutico
4.
Polymers (Basel) ; 14(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35683896

RESUMEN

The increased use of plastics has led to severe environmental pollution, particularly by microplastics-plastic particles 5 mm or less in diameter. These particles are formed by environmental factors such as weathering and ultraviolet irradiation, thereby making environmental pollution worse. This environmental pollution intensifies human exposure to microplastics via food chains. Despite potential negative effects, few toxicity assessments on microplastics are available. In this study, two sizes of polytetrafluoroethylene (PTFE) microplastics, approximately 5 µm and 10-50 µm, were manufactured and used for single and four-week repeated toxicity and pharmacokinetic studies. Toxicological effects were comprehensively evaluated with clinical signs, body weight, food and water consumption, necropsy findings, and histopathological and clinical-pathological examinations. Blood collected at 15, 30 60, and 120 min after a single administration of microplastics were analyzed by Raman spectroscopy. In the toxicity evaluation of single and four-week repeated oral administration of PTFE microplastics, no toxic changes were observed. Therefore, the lethal dose 50 (LD50) and no-observed-adverse-effect-level (NOAEL) of PTFE microplastics in ICR mice were established as 2000 mg/kg or more. PTFE microplastics were not detected in blood, so pharmacokinetic parameters could not be calculated. This study provides new insight into the long-term toxicity and pharmacokinetics of PTFE microplastics.

5.
ACS Nano ; 12(5): 4259-4268, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29617111

RESUMEN

Highly stretchable fiber strain sensors are one of the most important components for various applications in wearable electronics, electronic textiles, and biomedical electronics. Herein, we present a facile approach for fabricating highly stretchable and sensitive fiber strain sensors by embedding Ag nanoparticles into a stretchable fiber with a multifilament structure. The multifilament structure and Ag-rich shells of the fiber strain sensor enable the sensor to simultaneously achieve both a high sensitivity and largely wide sensing range despite its simple fabrication process and components. The fiber strain sensor simultaneously exhibits ultrahigh gauge factors (∼9.3 × 105 and ∼659 in the first stretching and subsequent stretching, respectively), a very broad strain-sensing range (450 and 200% for the first and subsequent stretching, respectively), and high durability for more than 10 000 stretching cycles. The fiber strain sensors can also be readily integrated into a glove to control a hand robot and effectively applied to monitor the large volume expansion of a balloon and a pig bladder for an artificial bladder system, thereby demonstrating the potential of the fiber strain sensors as candidates for electronic textiles, wearable electronics, and biomedical engineering.


Asunto(s)
Materiales Biocompatibles/química , Electrónica , Tecnología de Fibra Óptica , Fibras Ópticas , Textiles , Animales , Ingeniería Biomédica , Línea Celular , Ratones , Plata/química , Porcinos
6.
Materials (Basel) ; 9(2)2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-28787916

RESUMEN

Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA