Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 31(2): 2161-2176, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785236

RESUMEN

One of the leading approaches to large-scale quantum information processing (QIP) is the continuous-variable (CV) scheme based on time multiplexing (TM). As a fundamental building block for this approach, quantum light sources to sequentially produce time-multiplexed squeezed-light pulses are required; however, conventional CV TM experiments have used fixed light sources that can only output the squeezed pulses with the same squeezing levels and phases. We here demonstrate a programmable time-multiplexed squeezed light source that can generate sequential squeezed pulses with various squeezing levels and phases at a time interval below 100 ns. The generation pattern can be arbitrarily chosen by software without changing its hardware configuration. This is enabled by using a waveguide optical parametric amplifier and modulating its continuous pump light. Our light source will implement various large-scale CV QIP tasks.

2.
Opt Express ; 31(12): 19236-19254, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37381343

RESUMEN

Optical quantum information processing requires low loss interference of quantum light. Also, when the interferometer is composed of optical fibers, degradation of interference visibility due to the finite polarization extinction ratio becomes a problem. Here we propose a low loss method to optimize interference visibility by controlling the polarizations to a crosspoint of two circular trajectories on the Poincaré sphere. Our method maximizes visibility with low optical loss by using fiber stretchers as polarization controllers on both paths of the interferometer. We also experimentally demonstrate our method, where the visibility was maintained basically above 99.9% for three hours using fiber stretchers with an optical loss of 0.02 dB (0.5%). Our method makes fiber systems promising for practical fault-tolerant optical quantum computers.

3.
Opt Express ; 31(8): 12865-12879, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37157437

RESUMEN

In the field of continuous-variable quantum information processing, non-Gaussian states with negative values of the Wigner function are crucial for the development of a fault-tolerant universal quantum computer. While several non-Gaussian states have been generated experimentally, none have been created using ultrashort optical wave packets, which are necessary for high-speed quantum computation, in the telecommunication wavelength band where mature optical communication technology is available. In this paper, we present the generation of non-Gaussian states on wave packets with a short 8-ps duration in the 1545.32 nm telecommunication wavelength band using photon subtraction up to three photons. We used a low-loss, quasi-single spatial mode waveguide optical parametric amplifier, a superconducting transition edge sensor, and a phase-locked pulsed homodyne measurement system to observe negative values of the Wigner function without loss correction up to three-photon subtraction. These results can be extended to the generation of more complicated non-Gaussian states and are a key technology in the pursuit of high-speed optical quantum computation.

4.
Opt Express ; 30(9): 14161-14171, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35473166

RESUMEN

Continuous-wave (CW) squeezed light is used in the generation of various optical quantum states, and thus is a fundamental resource of fault-tolerant universal quantum computation using optical continuous variables. To realize a practical quantum computer, a waveguide optical parametric amplifier (OPA) is an attractive CW squeezed light source in terms of its THz-order bandwidth and suitability for modularization. The usages of a waveguide OPA in quantum applications thus far, however, are limited due to the difficulty of the generation of the squeezed light with a high purity. In this paper, we report the first observation of Wigner negativity of the states generated by a heralding method using a waveguide OPA. We generate Schrödinger cat states at the wavelength of 1545 nm with Wigner negativity using a quasi-single-mode ZnO-doped periodically poled LiNbO3 waveguide module we developed. Wigner negativity is regarded as an important indicator of the usefulness of the quantum states as it is essential in the fault-tolerant universal quantum computation. Our result shows that our waveguide OPA can be used in wide range of quantum applications leading to a THz-clock optical quantum computer.

5.
Opt Express ; 29(18): 28824-28834, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34615003

RESUMEN

Phase-sensitive amplifiers (PSAs) via the optical parametric amplification (OPA) process are capable of near-noiseless amplification, which can improve the performance of optical communications systems. OPA based on periodically poled lithium niobate (PPLN) waveguides is a proven means to implement a PSA with low additional nonlinear effects, such as frequency chirp, stimulated Brillouin scattering, and parametric crosstalk due to unwanted nonlinear interactions among pump and other signal waves. However, fiber compatibility is a challenge because optical coupling loss between a fiber and PPLN waveguide limits essential performance such as the gain and noise figure (NF), which makes PSAs still far from being practical. In this work, we developed a PPLN-waveguide-based pump-combiner-integrated OPA module with fiber input and output ports. With our recent development and optimization of the OPA module, we demonstrated high-performance phase-sensitive amplification with a gain of over 30 dB and an NF of 1.0 dB. In addition, we observed a 3-dB gain bandwidth of over 65 nm and flat NF characteristics in that wavelength band. The high conversion efficiency and high damage resistance of the PPLN waveguide, obtained by employing direct bonding and dry etching techniques, provide a high parametric gain. The low-loss coupling for the signal and pump between the fiber and a spot-size-converter-integrated PPLN waveguide through the dichroic beam combiner improve not only the gain but also the NF of the amplifier. Using the PSA as a preamplifier, the low-noise characteristics were confirmed by the sensitivity improvement provided by the low NF value.

6.
Opt Express ; 28(23): 34916-34926, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182949

RESUMEN

Phase-sensitive detection is the essential projective measurement for measurement-based continuous-variable quantum information processing. The bandwidth of conventional electrical phase-sensitive detectors is up to several gigahertz, which would limit the speed of quantum computation. It is theoretically proposed to realize terahertz-order detection bandwidth by using all-optical phase-sensitive detection with an optical parametric amplifier (OPA). However, there have been experimental obstacles to achieve large parametric gain for continuous waves, which is required for use in quantum computation. Here, we adopt a fiber-coupled χ(2) OPA made of a periodically poled LiNbO3 waveguide with high durability for intense continuous-wave pump light. Thanks to that, we manage to detect quadrature amplitudes of broadband continuous-wave squeezed light. 3 dB of squeezing is measured up to 3 THz of sideband frequency with an optical spectrum analyzer. Furthermore, we demonstrate the phase-locking and dispersion compensation of the broadband continuous-wave squeezed light, so that the phase of the squeezed light is maintained over 1 THz. The ultra-broadband continuous-wave detection method and dispersion compensation would help to realize all-optical quantum computation with over-THz clock frequency.

7.
Opt Express ; 28(26): 38553-38566, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33379423

RESUMEN

The minimum requirements for an optical reservoir computer, a recent paradigm for computation using simple algorithms, are nonlinearity and internal interactions. A promising optical system satisfying these requirements is a platform based on coupled degenerate optical parametric oscillators (DOPOs) in a fiber ring cavity. We can expect advantages using DOPOs for reservoir computing with respect to scalability and reduction of excess noise; however, the continuous stabilization required for reservoir computing has not yet been demonstrated. Here, we report the continuous and long-term stabilization of an optical system by introducing periodical phase modulation patterns for DOPOs and a local oscillator. We observed that the Allan variance of the optical phase up to 100 ms was suppressed and that the homodyne measurement signal had a relative standard deviation of 1.4% over 62,500 round trips. The proposed methods represent important technical bases for realizing stable computation on large-scale optical hybrid computers.

8.
Sci Adv ; 8(43): eadd4019, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36306354

RESUMEN

Controlling the temporal waveform of light is the key to a versatile light source in classical and quantum electronics. Although pulse shaping of classical light is mature and has been used in various fields, more advanced applications would be realized by a light source that generates arbitrary quantum light with arbitrary temporal waveforms. We call such a device a quantum arbitrary waveform generator (Q-AWG). The Q-AWG must be able to handle various quantum states of light, which are fragile. Thus, the Q-AWG requires a radically different methodology from classical pulse shaping. Here, we invent an architecture of Q-AWGs that can operate semi-deterministically at a repetition rate over gigahertz in principle. We demonstrate its core technology via generating highly nonclassical states with temporal waveforms that have never been realized before. This result would lead to powerful quantum technologies based on Q-AWGs such as practical optical quantum computing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA