Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Chem Phys ; 160(9)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38445740

RESUMEN

Three electric quadrupole transitions in the second overtone band of D2 are newly measured by comb-referenced cavity ring down spectroscopy around 1.18 µm. These extremely weak transitions (line intensities smaller than 10-29 cm/molecule) are the first to be detected in the (3-0) band of D2. The spectra of the O(3), O(2), and Q(2) lines near 8321, 8446, and 8607 cm-1, respectively, are recorded at room temperature for pressure values ranging between 100 and 600 Torr. Accurate transition frequencies and line intensities of the three D2 transitions are determined from a line fitting procedure using beyond-Voigt profiles, including strong Dicke narrowing. Considering statistical fit errors and possible biases due to the interference with water lines (which are six orders of magnitude stronger than the studied D2 lines), total uncertainties on the frequencies extrapolated at zero pressure are estimated below 14 MHz (∼4.7 × 10-4 cm-1). The derived experimental frequencies and intensities are compared to ab initio values. An overall agreement is achieved, confirming the positional accuracy of the most advanced theoretical calculations.

2.
Phys Chem Chem Phys ; 25(34): 22662-22668, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37594472

RESUMEN

A series of spectra of the quadrupolar electric S(2) transition of H2 in the 1-0 band near 4917 cm-1 has been recorded at seven pressure values between 2 and 100 Torr. The comb-referenced cavity ring down spectroscopy (CR-CRDS) technique was used for the recording of this very weak transition. The accuracy of the spectrum frequency axis is achieved by linking the CRDS setup to an optical frequency comb referenced to a GPS-referenced 10 MHz rubidium clock. Applying a multi-spectrum fit procedure to the seven averaged spectra with a quadratic speed dependence Nelkin-Ghatak profile, the transition frequency is determined (ν0 = 147 408 142 357 kHz) with an uncertainty of 150 kHz (∼1 × 10-9 in relative). This represents the smallest uncertainty achieved so far for a transition in the fundamental band of H2. The experimental frequency reported in this work is 1.53 MHz higher than the best-to-date theoretical value. This difference represents 1.5 times the 1σ-uncertainty (about 1 MHz) of the calculated frequency. The measurements also allow for the determination of the absolute intensity value of the S(2) line which shows an agreement with the ab initio value at the per mil level. In addition, the cross section of the collision induced absorption (CIA) underlying the S(2) line is accurately retrieved from the quadratic pressure dependence of the baseline level of the recorded spectra.

3.
Phys Chem Chem Phys ; 25(21): 14749-14756, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37219518

RESUMEN

Accurate transition frequencies of six lines of the (2-0) vibrational band of H2 are reported near 1.2 µm, namely Q1-Q4, S0, and S1. These weak electric-quadrupole transitions were measured at room temperature by comb-referenced cavity ring-down spectroscopy. Accurate transition frequencies were determined by applying a multi-spectrum fit procedure with various profile models including speed-dependent collisional broadening and shifting phenomena. Although none of the considered profiles allows reproducing the shape of the strongest lines at the noise level, the zero-pressure line centers are found mostly independent of the used profile. The obtained values are the first H2 (2-0) transition frequencies referenced to an absolute frequency standard. As a result, a 1σ-accuracy better than 100 kHz was achieved for the Q1, S0, and S1 transition frequencies, improving by three orders of magnitude the accuracy of previous measurements. For the six measured transitions, the most recent calculated frequencies were found to be systematically underestimated by about 2.51 MHz, about twice their claimed uncertainties. The energy separation between J = 2 and J = 0 rotational levels of the vibrational ground state was derived from Q2 and S0 transition frequencies and found within the 110 kHz uncertainty of its theoretical value. The same level of agreement was achieved for the energy separation between the J = 3 and J = 1 rotational levels obtained by the difference of Q3 and S1 transition frequencies. The ab initio values of the intensity of the six transitions were validated within a few thousandths.

4.
Phys Chem Chem Phys ; 25(24): 16319-16330, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37309841

RESUMEN

Saturation spectroscopy has been used to determine the absolute frequencies of 107 ro-vibrational transitions of the two strongest 12CO2 bands of the 2 µm region. The considered 20012-00001 and 20013-00001 bands are of importance for the CO2 monitoring in our atmosphere. Lamb dips were measured using a cavity ring-down spectrometer linked to an optical frequency comb referenced to a GPS-disciplined Rb oscillator or to an ultra-stable optical frequency. The comb-coherence transfer (CCT) technique was applied to obtain a RF tunable narrow-line comb-disciplined laser source using an external cavity diode laser and a simple electro-optic modulator. This setup allows obtaining transition frequency measurements with kHz-level accuracy. The resulting accurate values of the energy levels of the 20012 and 20013 vibrational states are reproduced with a (1σ)-rms of about 1 kHz using the standard polynomial model. The two upper vibrational states appear thus to be highly isolated except for a local perturbation of the 20012 state leading to an energy shift of 15 kHz at J = 43. A recommended list of 145 transition frequencies with kHz accuracy is obtained providing secondary frequency standards across the 1.99-2.09 µm range. The reported frequencies will be valuable to constrain the zero-pressure frequencies of the considered transitions in 12CO2 retrieval from atmospheric spectra.

5.
J Chem Phys ; 148(5): 054201, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29421897

RESUMEN

Doppler-free saturated-absorption Lamb dips were measured at sub-Pa pressures on rovibrational lines of H216O near 7180 cm-1, using optical feedback frequency stabilized cavity ring-down spectroscopy. The saturation of the considered lines is so high that at the early stage of the ring down, the cavity loss rate remains unaffected by the absorption. By referencing the laser source to an optical frequency comb, transition frequencies are determined down to 100 Hz precision and kHz accuracy. The developed setup allows resolving highly K-type blended doublets separated by about 10 MHz (to be compared to a HWHM Doppler width on the order of 300 MHz). A comparison with the most recent spectroscopic databases is discussed. The determined K-type splittings are found to be very well predicted by the most recent variational calculations.

6.
Phys Chem Chem Phys ; 17(27): 17762-70, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26084382

RESUMEN

The room temperature self- and foreign-continua of water vapor have been measured near 4250 cm(-1) with a newly developed high sensitivity cavity ring down spectrometer (CRDS). The typical sensitivity of the recordings is αmin≈ 6 × 10(-10) cm(-1) which is two orders of magnitude better than previous Fourier transform spectroscopy (FTS) measurements in the spectral region. The investigated spectral interval is located in the low energy range of the important 2.1 µm atmospheric transparency window. Self-continuum cross-sections, CS, were retrieved from the quadratic dependence of the spectrum base line level measured for different water vapor pressures between 0 and 15 Torr, after subtraction of the local water monomer lines contribution calculated using HITRAN2012 line parameters. The CS values were determined with 5% accuracy for four spectral points between 4249.2 and 4257.3 cm(-1). Their values of about 3.2 × 10(-23) cm(2) molecule(-1) atm(-1) are found 20% higher than predicted by the MT_CKD V2.5 model but two times weaker than reported in the literature using FTS. The foreign-continuum was evaluated by injecting various amounts of synthetic air in the CRDS cell while keeping the initial water vapor partial pressure constant. The foreign-continuum cross-section, CF, was retrieved from a linear fit of the spectrum base line level versus the air pressure. The obtained CF values are larger by a factor of 4.5 compared to the MT_CKD values and smaller by a factor of 1.7 compared to previous FTS values. As a result, for an atmosphere at room temperature with 60% relative humidity, the foreign-continuum contribution to the water continuum near 4250 cm(-1) is found to be on the same order as the self-continuum contribution.

7.
J Phys Chem A ; 119(39): 10022-34, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26348119

RESUMEN

Two setups based on CW cavity ring-down spectroscopy were used at Bruxelles and Rennes to record jet-cooled water dimer absorption between 7188 and 7285, and between 7357 and 7386 cm(-1). Some 19 absorption features are reported, significantly more than in the literature. Limited high-resolution information is available due to strong overlap between neighboring vibration-rotation-tunneling (VRT) structures and to spectral broadening induced by short upper state vibrational predissociation lifetimes, likely to range between 100 and 20 ps. Rotational band contours analyses are performed to assign the partly resolved VRT structures to the v1v2v3,vfvb = 000,11; 200,00; 000,20; and 101,00 zero-order vibrational states. Their wavenumbers are found to be 7192.34, 7225.86, 7240.57, and 7256.99 cm(-1), respectively. Both so-called acceptor-switching tunneling components are involved in the assignments whose tentative character is discussed.

8.
J Chem Phys ; 142(21): 214305, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-26049494

RESUMEN

A new experimental setup coupling a High Enthalpy Source (HES) reaching 2000 K to a cw-cavity ring-down spectrometer has been developed to investigate rotationally cold hot bands of polyatomic molecules in the [1.5, 1.7] µm region. The rotational and vibrational molecular degrees of freedom are strongly decoupled in the hypersonic expansion produced by the HES and probed by cavity ring-down spectroscopy. Carbon monoxide has been used as a first test molecule to validate the experimental approach. Its expansion in argon led to rotational and vibrational temperatures of 6.7 ± 0.8 K and 2006 ± 476 K, respectively. The tetradecad polyad of methane (1.67 µm) was investigated under similar conditions leading to rotational and vibrational temperatures of 13 ± 5 K and 750 ± 100 K, respectively. The rotationally cold structure of the spectra reveals many hot bands involving highly excited vibrational states of methane.

9.
Phys Rev Lett ; 113(14): 143002, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25325639

RESUMEN

Since the discovery of anomalies in ozone isotope enrichment, several fundamental issues in the dynamics linked to the shape of the potential energy surface in the transition state region have been raised. The role of the reeflike structure on the minimum energy path is an intricate question previously discussed in the context of chemical experiments. In this Letter, we bring strong arguments in favor of the absence of a submerged barrier from ultrasensitive laser spectroscopy experiments combined with accurate predictions of highly excited vibrations up to nearly 95% of the dissociation threshold.

10.
J Chem Phys ; 141(7): 074301, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25149780

RESUMEN

We show how to effectively introduce a proper description of the velocity-changing collisions into the model of isolated molecular transition for the case of self- and Ar-perturbed H2. We demonstrate that the billiard-ball (BB) approximation of the H2-H2 and H2-Ar potentials gives an accurate description of the velocity-changing collisions. The BB model results are compared with ab initio classical molecular dynamics simulations. It is shown that the BB model correctly reproduces not only the principal properties such as frequencies of velocity-changing collisions or collision kernels, but also other characteristics of H2-H2 and H2-Ar gas kinetics like rate of speed-changing collisions. Finally, we present line-shape measurement of the Q(1) line of the first overtone band of self-perturbed H2. We quantify the systematic errors of line-shape analysis caused by the use of oversimplified description of velocity-changing collisions. These conclusions will have significant impact on recent rapidly developing ultra-accurate metrology based on Doppler-limited spectroscopic measurements such as Doppler-width thermometry, atmosphere monitoring, Boltzmann constant determination, or transition position and intensity determination for fundamental studies.

11.
J Chem Phys ; 138(3): 034302, 2013 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-23343271

RESUMEN

Complementary tests of the partially correlated speed-dependent Keilson-Storer (pCSDKS) model for the shape of isolated transition of pure water vapor [N. H. Ngo et al., J. Chem. Phys. 136, 154310 (2012)] are made using new measurements. The latter have been recorded using a high sensitivity cavity ring down spectrometer, for seven self-broadened H(2)O lines in the 1.6 µm region at room temperature and for pressures from 0.5 to 15 Torr. Furthermore, the H(2) (18)O spectra of [M. D. De Vizia et al., Phys. Rev. A 83, 052506 (2011)] in the 1.38 µm region, measured at 273.15 K and for pressures from 0.3 to 3.75 Torr have also been used for comparison with the model. Recall that the pCSDKS model takes into account the collision-induced velocity changes, the speed dependences of the broadening and shifting coefficients as well as the partial correlation between velocity and rotational-state changes. All parameters of the model have been fixed at values previously determined, except for a scaling factor applied to the input speed-dependent line broadening. Comparisons between predictions and experiments have been made by looking at the results obtained when fitting the calculated and measured spectra by Voigt profiles. The good agreement obtained for all considered lines, at different temperature and pressure conditions, confirms the consistency and the robustness of the model. Limiting cases of the model have been then derived, showing the influence of different contributions to the line shape.


Asunto(s)
Simulación de Dinámica Molecular , Agua/química , Presión , Vapor , Temperatura
12.
Phys Chem Chem Phys ; 13(17): 7985-96, 2011 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-21437294

RESUMEN

The high sensitivity absorption spectra of methane at room temperature and 80 K were recorded by CW-Cavity Ring Down Spectroscopy in the 1.28 µm transparency window (7541-7919 cm(-1)). The empirical line parameters of 7690 and 5794 transitions were retrieved at room temperature and at 80 K, respectively. The achieved sensitivity (α(min)≈ 10(-10) cm(-1)) allowed detecting transitions with intensities as small as 5 × 10(-30) cm per molecule. In order to facilitate identification of the CH(3)D transitions present in the CRDS spectrum of methane in "natural" isotopic abundance, the spectrum of a highly enriched CH(3)D sample was recorded by differential absorption spectroscopy at room temperature and at 80 K. The CH(3)D relative contribution in the considered transparency window is found to be significant only at 80 K (up to 15%) but more limited than in the 1.58 µm transparency window.The low energy values of the transitions observed at both room temperature and 80 K were derived from the variation of their line intensities. Empirical lower states and J values have been obtained for 2821 CH(4) transitions representing 94.1 and 98.5% of the absorbance in the region at room temperature and 80 K, respectively. The good quality of these derived energy values is demonstrated by the marked propensity of the corresponding CH(4) lower state J values to be close to integers. The constructed line lists extend to higher energies the WKC (Wang-Kassi-Campargue) line lists of methane in the near infrared (1.71-1.26 µm). They allow one accounting for the temperature dependence of methane absorption between 80 K and 300 K and are of importance for the analysis of the near infrared spectrum of several planetary bodies like Titan, Uranus and Neptune. The centers of the 3ν(2) + ν(3) and 6ν(4) bands responsible of the absorption in the studied region are discussed in relation with recent theoretical calculations.

13.
Opt Express ; 14(23): 11442-52, 2006 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19529562

RESUMEN

We report on the first application of extended-wavelength DFB diode lasers to Cavity-Enhanced Absorption Spectroscopy in-situ trace measurements on geothermal gases. The emission from the most active fumarole at the Solfatara volcano near Naples (Italy) was probed for the presence of CO and CH(4). After passing through a gas dryer and cooler, the volcanic gas flow (98% CO(2)) was analysed in real time for the concentration of these species, whose relatively strong absorption lines could be monitored simultaneously by a single Distributed Feed-Back (DFB) GaSb-based diode laser emitting around 2.33 mum (4300 cm(-1)) at room temperature. The concentrations were found to be about 3 ppm and 75 ppm, respectively, while actual detection limits for these molecules are around 1 ppb. We discuss the possibility of detecting other species of interest for volcanic emission monitoring.

14.
Rev Sci Instrum ; 87(8): 083109, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27587102

RESUMEN

The integration of an industry ready packaged Sb-based Vertical-External-Cavity Surface-Emitting-Laser (VECSEL) into a Cavity Ring Down Spectrometer (CRDS) is presented. The instrument operates in the important 2.3 µm atmospheric transparency window and provides a high sensitivity (minimum detectable absorption of 9 × 10(-11) cm(-1)) over a wide spectra range. The VECSEL performances combine a large continuous tunability over 120 cm(-1) around 4300 cm(-1) together with a powerful (∼5 mW) TEM00 diffraction limited beam and linewidth at MHz level (for 1 ms of integration time). The achieved performances are illustrated by high sensitivity recordings of the very weak absorption spectrum of water vapor in the region. The developed method gives potential access to the 2-2.7 µm range for CRDS.

15.
Artículo en Inglés | MEDLINE | ID: mdl-19880347

RESUMEN

A proof of principle experiment was performed by recording the cavity enhanced absorption spectrum of the weak b-X transition of molecular oxygen in the atmosphere using a Ti:Sa femtosecond laser as an absorption source and a high resolution continuous scan Fourier transform interferometer. The cavity was mode matched and either continuously scanned or stabilized at the so-called magic point. An optimal rms noise equivalent absorption of 3x10(-7) cm(-1) Hz(-1/2) was reached in the latter case, corresponding to alpha(min)=3x10(-7) cm(-1).


Asunto(s)
Rayos Láser , Oxígeno/química , Espectroscopía Infrarroja por Transformada de Fourier , Absorción , Samario/química , Espectroscopía Infrarroja por Transformada de Fourier/instrumentación , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Titanio/química
16.
Opt Lett ; 33(11): 1231-3, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18516184

RESUMEN

We demonstrate the possibility of measuring parts in 10(12) by volume concentrations of radicals of high atmospheric interest, such as IO or BrO, as needed for monitoring these species in the environment. We apply cavity-enhanced absorption spectroscopy in the near UV range using a frequency-doubled Ti:Sa mode-locked femtosecond laser. Efficient broadband injection of a high-finesse cavity is obtained by matching this optical frequency-comb source to the comb of cavity transmission resonances. A grating spectrograph and a detector array disperse and detect the spectrum transmitted by the cavity carrying the absorption features of intracavity molecules. Spectra recorded over ~4 nm with 10 s averaging display a noise level of 8 x 10(-10)/cm.

17.
Phys Chem Chem Phys ; 10(20): 2925-46, 2008 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-18473041

RESUMEN

Weak vibrational bands of (16)O(3) could be detected in the 5850-7030 cm(-1) spectral region by CW-cavity ring down spectroscopy using a set of fibered DFB diode lasers. As a result of the high sensitivity (noise equivalent absorption alpha(min) approximately 3 x 10(-10) cm(-1)), bands reaching a total of 16 upper vibrational states have been previously reported in selected spectral regions. In the present report, the analysis of the whole investigated region is completed by new recordings in three spectral regions which have allowed: (i) a refined analysis of the nu(1) + 3nu(2) + 3nu(3) band from new spectra in the 5850-5900 cm(-1) region; (ii) an important extension of the assignments of the 2nu(1)+5nu(3) and 4nu(1) + 2nu(2) + nu(3) bands in the 6500-6600 cm(-1) region, previously recorded by frequency modulation diode laser spectroscopy. The rovibrational assignments of the weak 4nu(1) + 2nu(2) + nu(3) band were fully confirmed by the new observation of the 4nu(1) + 2nu(2) + nu(3)- nu(2) hot band near 5866.9 cm(-1) reaching the same upper state; (iii) the observation and modelling of three A-type bands at 6895.51, 6981.87 and 6990.07 cm(-1) corresponding to the highest excited vibrational bands of ozone detected so far at high resolution. The upper vibrational states were assigned by comparison of their energy values with calculated values obtained from the ground state potential energy surface of (16)O(3). The vibrational mixing and consequently the ambiguities in the vibrational labelling are discussed. For each band or set of interacting bands, the spectroscopic parameters were determined from a fit of the corresponding line positions in the frame of the effective Hamiltonian (EH) model. A set of selected absolute line intensities was measured and used to derive the parameters of the effective transition moment operator. The exhaustive review of the previous observations gathered with the present results is presented and discussed. It leads to a total number of 3863 energy levels belonging to 21 vibrational states and corresponding to 7315 transitions. In the considered spectral region corresponding to up to 82% of the dissociation energy, the increasing importance of the "dark" states is illustrated by the occurrence of frequent rovibrational perturbations and the observation of many weak lines still unassigned.


Asunto(s)
Ozono/química , Espectroscopía Infrarroja Corta/métodos , Análisis Espectral/métodos , Ozono/análisis , Sensibilidad y Especificidad , Análisis Espectral/instrumentación , Vibración
18.
J Mol Spectrosc ; 202(1): 19-23, 2000 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10837163

RESUMEN

The rotational spectrum of the 1-cyano-3-fluoro-but-1-ene has been recorded with a pulsed-nozzle microwave Fourier transform spectrometer over the range 6-20 GHz. The frequencies were fitted to the Hamiltonian of Watson (A-reduction, I(r) representation). The resulting rotational constants are A = 7493.404(1) MHz, B = 1211.9831(2) MHz, and C = 1096.0908(1) MHz. By comparing the experimental rotational constants with those obtained by ab initio calculations, we found without ambiguity that the stable conformation for the molecule is the one with the fluorine atom lying in the C&bond;CCN plane (CF-eclipsed conformer). Copyright 2000 Academic Press.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA