Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(29): e2204369119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858362

RESUMEN

The biological carbon pump (BCP) stores ∼1,700 Pg C from the atmosphere in the ocean interior, but the magnitude and direction of future changes in carbon sequestration by the BCP are uncertain. We quantify global trends in export production, sinking organic carbon fluxes, and sequestered carbon in the latest Coupled Model Intercomparison Project Phase 6 (CMIP6) future projections, finding a consistent 19 to 48 Pg C increase in carbon sequestration over the 21st century for the SSP3-7.0 scenario, equivalent to 5 to 17% of the total increase of carbon in the ocean by 2100. This is in contrast to a global decrease in export production of -0.15 to -1.44 Pg C y-1. However, there is significant uncertainty in the modeled future fluxes of organic carbon to the deep ocean associated with a range of different processes resolved across models. We demonstrate that organic carbon fluxes at 1,000 m are a good predictor of long-term carbon sequestration and suggest this is an important metric of the BCP that should be prioritized in future model studies.


Asunto(s)
Secuestro de Carbono , Carbono , Ecosistema , Atmósfera/química , Carbono/análisis , Modelos Teóricos , Océanos y Mares , Incertidumbre
2.
Philos Trans A Math Phys Eng Sci ; 381(2249): 20220062, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37150198

RESUMEN

The effect of the Southern Ocean on global climate change is assessed using Earth system model projections following an idealized 1% annual rise in atmospheric CO2. For this scenario, the Southern Ocean plays a significant role in sequestering heat and anthropogenic carbon, accounting for 40% ± 5% of heat uptake and 44% ± 2% of anthropogenic carbon uptake over the global ocean (with the Southern Ocean defined as south of 36°S). This Southern Ocean fraction of global heat uptake is however less than in historical scenarios with marked hemispheric contrasts in radiative forcing. For this idealized scenario, inter-model differences in global and Southern Ocean heat uptake are strongly affected by physical feedbacks, especially cloud feedbacks over the globe and surface albedo feedbacks from sea-ice loss in high latitudes, through the top-of-the-atmosphere energy balance. The ocean carbon response is similar in most models with carbon storage increasing from rising atmospheric CO2, but weakly decreasing from climate change with competing ventilation and biological contributions over the Southern Ocean. The Southern Ocean affects a global climate metric, the transient climate response to emissions, accounting for 28% of its thermal contribution through its physical climate feedbacks and heat uptake, and so affects inter-model differences in meeting warming targets. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA